Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội

Nội dung Đề Olympic lớp 11 môn Toán năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội Bản PDF Sytu giới thiệu đến bạn đọc đề thi Olympic Toán lớp 11 năm học 2018 – 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội, đề gồm 01 trang với 05 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài thi. Trích dẫn đề Olympic Toán lớp 11 năm 2019 cụm trường THPT Hà Đông – Hoài Đức – Hà Nội : + Trong một hộp kín đựng 100 tấm thẻ như nhau được đánh số từ 1 đến 100. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. [ads] + Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau. Điểm M di động trên cạnh AB, điểm N di động trên cạnh A’D’ sao cho A’N = 2AM. Gọi (a) là mặt phẳng chứa MN và song song với AC. Dựng thiết diện của hình hộp bởi (a) và chứng minh rằng (a) luôn chứa một đường thẳng cố định. + Cho tứ diện ABCD. Chứng minh rằng: (AB + CD)^2 + (AD + BC)^2 > (AC + BD)?.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic dành cho học sinh môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Cứ vào đầu mỗi tháng, ông A đến gửi tiết kiệm ngân hàng số tiền 10 triệu đồng với lãi suất là 0,5% / tháng theo hình thức lãi kép. Hỏi sau đúng 5 năm thì ông A nhận được số tiền cả gốc và lãi là bao nhiêu, biết rằng trong suốt quá trình gửi, ông A không rút tiền ra và lãi suất của ngân hàng không thay đổi. + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B AB BC a AD a 2. Biết SA vuông góc với đáy ABCD và SA a. 1) Tính sin của góc giữa đường thẳng BD và mặt phẳng SAC 2) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và song song với mặt phẳng SBC cắt các cạnh AB SA SD lần lượt tại N P và Q. Chứng minh tứ giác MNPQ là hình thang vuông. 3) Khi M thay đổi, tìm giá trị lớn nhất của diện tích tứ giác MNPQ. + Cho dãy số un xác định bởi 6 n. Tìm số hạng tổng quát n u và tính giới hạn m 4.
Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Cho bất phương trình log 2 log 3 1 0 x. 1) Giải bất phương trình đã cho khi m 2. 2) Tìm các giá trị của m để bất phương trình đã cho nghiệm đúng với mọi x thuộc khoảng 23. + Gọi S là tập hợp các số tự nhiên có 7 chữ số sao cho trong mỗi số đó chữ số 0 xuất hiện đúng 3 lần. Chọn ngẫu nhiên một số thuộc S, tính xác suất để số đó chia hết cho 5. + Cho hình chóp S.ABC có cạnh 6 a SB các cạnh còn lại của hình chóp bằng a. Gọi I là trung điểm AC. 1) Chứng minh SI vuông góc với đường thẳng BC. 2) Tính cosin của góc giữa hai đường thẳng AB và SC. 3) Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và tam giác SAC. Một mặt phẳng đi qua G và G’ cắt hai cạnh SA SC lần lượt tại M và N. Khi MN đạt giá trị nhỏ nhất, tính diện tích của tam giác GMN.
Đề thi Olympic Toán 11 năm 2023 - 2024 liên cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic dành cho học sinh môn Toán 11 năm học 2023 – 2024 liên cụm trường THPT, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 liên cụm trường THPT – Hà Nội : + Cho phương trình cos2 3sin 4 0 x m với m là tham số thực. a) Giải phương trình khi m 0. b) Tìm tất cả giá trị của m để phương trình đã cho có nghiệm thuộc khoảng 2. + Gọi S là tập hợp các số tự nhiên có 6 chữ số sao cho trong mỗi số đó, các chữ số 123 đều xuất hiện 2 lần. a) Tính số phần tử của tập hợp S. b) Chọn ngẫu nhiên một số thuộc S. Tính xác suất để số đó là số chẵn. c) Chọn ngẫu nhiên một số thuộc S. Tính xác suất để số đó có các chữ số giống nhau không đứng cạnh nhau. + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A B 60 AB a. Đường thẳng SB vuông góc với mặt phẳng ABC và SB a. Gọi O E lần lượt là trung điểm của hai đoạn thẳng BC và AB. a) Gọi là góc giữa hai đường thẳng SA và CE. Tính cos. b) Một mặt phẳng song song với hai đường thẳng OA SB cắt các cạnh AB SA SC BC của hình chóp S ABC lần lượt tại các điểm M N P Q. Chứng minh tứ giác MNPQ là hình thang. c) Tìm giá trị lớn nhất của diện tích tứ giác MNPQ.