Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Chúng tôi xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 của phòng GD&ĐT thành phố Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các em tham khảo. Chi tiết đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình: 1. Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Hãy tìm số công nhân của các nhóm. 2. Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 2.1. Tính số đo góc EOF và chứng minh OP = OQ. 2.2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. 3. Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 3.1. Chứng minh ABN = AMC và BN = CM. 3.2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN. Hãy cùng tham gia và thử sức với các bài toán thú vị này để nâng cao kiến thức và kỹ năng Toán của mình nhé!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.