Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 11 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 2

Nội dung Đề KSCL lớp 11 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 2 Bản PDF Với mục đích tạo điều kiện để các em học sinh khối 11 được rèn luyện và làm quen sớm với kỳ thi THPT Quốc gia môn Toán, trường THPT chuyên Vĩnh Phúc đã tiến hành tổ chức kỳ thi KSCL Toán lớp 11 ôn thi THPTQG năm 2018 – 2019 lần 2, đề thi có mã 895 gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh làm bài trong 90 phút, các câu hỏi nằm trong phần kiến thức Toán lớp 10 và Toán lớp 11 đã được học, đề thi có đáp án đầy đủ các mã đề. Trích dẫn đề KSCL Toán lớp 11 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 2 : + Phát biểu nào sau đây là sai: A. Luôn tồn tại hai đường thẳng song song với nhau và cả hai đường thẳng này cùng cắt hai đường thẳng chéo nhau. B. Hai đường thẳng gọi là chéo nhau nếu chúng không đồng phẳng. C. Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm chung. D. Hai đường thẳng gọi là đồng phẳng nếu chúng cùng nằm trong một mặt phẳng. [ads] + Phát biểu nào sau đây là sai: A. Hai hình vuông có cùng diện tích thì bằng nhau. B. Hai hình tròn có cùng chu vi thì bằng nhau. C. Hai tứ giác lồi có các cặp cạnh tương ứng bằng nhau và một cặp đường chéo tương ứng bằng nhau thì bằng nhau. D. Hai hình chữ nhật có cùng chu vi thì bằng nhau. + Trong trận chung kết bóng đá phải phân định thắng thua bằng đá luân lưu 11 mét. Huấn luyện viên của mỗi đội cần trình với trọng tài một danh sách sắp xếp thứ tự 5 cầu thủ trong số 11 cầu thủ để đá luân lưu 5 quả 11 mét. Số cách lập danh sách 5 cầu thủ đá 11 mét là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lớp 11 môn Toán năm học 2017 2018 trường THPT Quế Võ 2 Bắc Ninh
Nội dung Đề khảo sát lớp 11 môn Toán năm học 2017 2018 trường THPT Quế Võ 2 Bắc Ninh Bản PDF Đề khảo sát môn Toán lớp 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Hàn Thuyên Bắc Ninh
Nội dung Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Hàn Thuyên Bắc Ninh Bản PDF Đề kiểm tra chất lượng Toán lớp 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 2018 lớp 11 môn Toán trường THPT Đồng Đậu Vĩnh Phúc
Nội dung Đề khảo sát chất lượng lần 1 năm học 2017 2018 lớp 11 môn Toán trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán lớp 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.
Khảo sát chuyên đề lớp 11 môn Toán lần 1 năm học 2017 2018 trường Nguyễn Thị Giang Vĩnh Phúc
Nội dung Khảo sát chuyên đề lớp 11 môn Toán lần 1 năm học 2017 2018 trường Nguyễn Thị Giang Vĩnh Phúc Bản PDF Đề thi khảo sát chuyên đề Toán lớp 11 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Trong những khẳng định sau đây, khẳng định nào sai? A. Hàm số y = cotx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx là hàm tuần hoàn với chu kì 2π C. Hàm số y = cos(x^3) là hàm số chẵn D. Hàm số y = tanx đồng biến trên khoảng (0; π) [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: 2x – y + 1 = 0 và véctơ v = (2; -3). Phép tịnh tiến theo véctơ v biến d thành d’. Phương trình đường thẳng d’ là: A. 2x – 3y + 1 = 0 B. 2x – y – 7 = 0 C. 2x – y + 6 = 0 D. 2x – y – 6 = 0 + Để có được đồ thị hàm số y = cosx, ta thực hiện phép tịnh tiến đồ thị hàm số y = sinx: A. Sang phải π đơn vị B. Sang trái 2π đơn vị C. Sang phải 2π đơn vị D. Sang trái π đơn vị File WORD (dành cho quý thầy, cô):