Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2013 2014

Nội dung Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2013 2014 Bản PDF Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Có 4 đồ vật đôi một khác nhau được chia hết cho ba người. Hỏi có bao nhiêu cách chia để mỗi người có ít nhất một đồ vật. + Gieo một con súc sắc (được chế tạo cân đối, đồng chất) hai lần liên tiếp. Tính xác suất để tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo là một số lẻ. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. M và N lần lượt là trung điểm các cạnh SA, CD. 1. Chứng minh MN song song với mặt phẳng (SBC). 2. (a) là mặt phẳng qua M, song song với AN và SC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (a). 3. Mặt phẳng (a) cắt đường thẳng SB tại I. Tính tỉ số IS/IB

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Du - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Du – TP HCM : + Đoàn trường THPT Nguyễn Du có 14 đoàn viên ưu tú, trong đó có 6 đoàn viên nam và 8 đoàn viên nữ. Hãy cho biết đoàn trường có bao nhiêu cách chọn ra 6 đoàn viên đi dự hội trại sao cho có ít nhất hai đoàn viên nữ và hai đoàn viên nam. + Trong giờ học môn giáo dục quốc phòng tại trường THPT Nguyễn Du, thầy giáo yêu cầu ba học sinh A1, A2, A3 độc lập với nhau cùng nổ súng bắn vào mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của ba em học sinh A1, A2, A3 tương ứng là 0,7; 0,6 và 0,5. Tính xác suất để có ít nhất một em học sinh bắn trúng mục tiêu. + Cho tứ diện ABCD. Gọi M là điểm nằm trên cạnh BC sao cho BM = 2MC, N là trung điểm của BD và G là trọng tâm của tam giác ABD. a) Tìm giao tuyến của cặp mặt phẳng (AMN) và (ACD). b) Chứng minh đường thẳng MG song song với mặt phẳng (ACD).
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường Hoàng Hoa Thám - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Đội tuyển Toán lớp 11 của trường Hoàng Hoa Thám gồm 7 bạn lớp 11A1, 5 bạn lớp 11A2 và 3 bạn lớp 11A3. Chọn ngẫu nhiên 4 bạn để đi thi kì thi Olympic 30/4, tính xác suất để 4 bạn được chọn có đủ cả 3 lớp. + Cho hình chóp S.ABCD với ABCD là hình thang đáy lớn AD. M là điểm thuộc đoạn thẳng SA. Xác định giao điểm I của đường thẳng SD và mặt phẳng (MBC). + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Từ tập A có thể lập được bao nhiêu số tự nhiên lẻ có năm chữ số khác nhau và không chia hết cho 5.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường Lý Thái Tổ - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Lý Thái Tổ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Lý Thái Tổ – TP HCM : + Một hộp có 10 viên bi xanh, 5 viên bi đỏ, 6 viên bi vàng. Chọn ngẫu nhiên 4 viên bi. Tính xác suất để 4 viên bi được chọn có cùng màu. + Tìm n biết hệ số của x3 trong khai triển (1 – 5x)n bằng -20625. + Từ tập X = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau mà số đó là số lẻ.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường TH Thực hành Sài Gòn - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Cho tập hợp X = {0; 1; 2; 3; 4; 5}. Hỏi có bao nhiêu cách lập ra một số tự nhiên gồm 4 chữ số được lấy từ X sao cho số tạo thành là một số lẻ (các chữ số của số đó không nhất thiết phải khác nhau)? + Lớp 11A có 36 học sinh, trong đó có 16 bạn họ Nguyễn, 12 bạn họ Lê và 8 bạn họ Trần. Chọn ngẫu nhiên 4 bạn trong lớp này. Tính xác suất để trong 4 bạn được chọn có đủ cả 3 họ nói trên. + Cho một đa giác lồi 20 cạnh. Hỏi có bao nhiêu tam giác có các đỉnh là đỉnh của đa giác và các cạnh không phải là cạnh của đa giác này?