Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội

Nội dung Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội Bản PDF - Nội dung bài viết Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Xin chào quý thầy cô và các em học sinh lớp 7! Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của hệ thống giáo dục Archimedes School, thành phố Hà Nội. Đề thi bao gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 135 phút. Một trong những bài toán trong đề thi là: Có 64 học sinh đứng trên một lưới ô vuông kích thước 8 x 8, mỗi ô vuông có đúng một học sinh đứng trên đó và toàn bộ 64 học sinh đều có chiều cao khác nhau. Biết rằng An là người cao nhất trong những người thấp nhất ở mỗi hàng và Bình là người thấp nhất trong những người cao nhất ở mỗi cột, hãy so sánh chiều cao của An và Bình. Bên cạnh đó, đề thi còn đề cập đến bài toán khác như tính giá trị của biểu thức S với số nguyên dương n, và thách thức của Thầy Cẩn khi muốn viết các số vào các đỉnh của một khối lập phương sao cho tổng hai số trên hai đầu mút của mỗi cạnh là đôi một khác nhau. Đây là cơ hội để các em học sinh lớp 7 thể hiện khả năng giải toán, logic và sự sáng tạo của mình. Chúc các em thành công trong việc giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội : + Trong vòng bán kết giải bóng đá của trường THCS Phù Đổng có 4 đội thi đấu, gọi A là tập hợp các cầu thủ; B là tập hợp các số áo thi đấu. Quy tắc mỗi cầu thủ ứng với số áo của họ có phải là một hàm số không? Vì sao? + Cho ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ đoạn thẳng AE vuông góc và bằng AB. Trên nửa mặt phẳng bờ AC chứa điểm B, vẽ đoạn thẳng AD vuông góc và bằng AC. a/ Chứng minh: BD = CE. b/ Trên tia đối của tia MA lấy N sao cho MN = MA. Chứng minh: ADE = CAN. c/ Gọi I là giao điểm của DE và AM. Chứng minh. + Tìm các số tự nhiên x, y thỏa mãn: 2×2 + 3y2 = 77.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương : + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 – 2n+2 + 3n – 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3.
Đề học sinh giỏi Toán 7 năm 2015 - 2016 phòng GDĐT Sơn Dương - Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5,6,7 nhưng sau đó chia theo tỉ lệ 4,5,6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi P, Q là trung điểm của AD, BC và I là giao điểm các đường vuông góc với AD và BC tại P và Q. a) Chứng minh ∆AIB = ∆DIC. b) Chứng minh AI là tia phân giác của góc BAC. c) Kẻ IE vuông góc với AB, chứng minh AD AE. + Cho a, b, c là ba số thực khác 0, thoả mãn. Hãy tính giá trị của biểu thức.