Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG thành phố Toán 12 năm 2019 - 2020 sở GDĐT Hà Nội

Nhằm tuyển chọn các em học sinh giỏi Toán 12 THPT tham dự kỳ thi học sinh giỏi Toán THPT cấp Quốc gia, ngày 03 tháng 10 năm 2019, sở Giáo dục và Đào tạo Hà Nội tổ chức kỳ thi chọn học sinh giỏi thành phố môn Toán 12 năm học 2019 – 2020. Đề thi chọn HSG thành phố Toán 12 năm 2019 – 2020 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG thành phố Toán 12 năm 2019 – 2020 sở GD&ĐT Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD tâm I với M, N(1;-1) lần lượt là trung điểm của các đoạn thẳng IA, CD. Biết điểm B có hoành độ dương và đường thẳng MB có phương trình x – 3y + 6 = 0, tìm tọa độ điểm C. [ads] + Cho hình chóp S.ABC có CA = CB = √2, AB = 2, tam giác SAB là tam giác đều, mp (SAB) vuông góc với mp (ABC). Gọi D là chân đường phân giác trong hạ từ đỉnh C của tam giác SBC. a) Tính thể tích khối chóp D.ABC. b) Gọi M là điểm sao cho các góc tạo bởi các mặt phẳng (MAB), (MBC), (MCA) với mặt phẳng (ABC) là bằng nhau. Tìm giá trị nhỏ nhất của |MA + MB + 4MS – 4MC|. + Xét các số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị lớn nhất của: P = a^3 + b^3 + c^3 – 3/a – 3/b – 3/c.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Tiền Giang
Thứ Ba ngày 09 tháng 03 năm 2021, sở Giáo dục và Đào tạo Tiền Giang tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề).
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán (thường) năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho hàm số y = x^2 + x + 2021,5 có đồ thị (P). Tìm tập hợp các điểm M trong mặt phẳng mà từ M có thể kẻ được hai tiếp tuyến vuông góc đến (P). + Cho hình nón đỉnh S có đáy là đường tròn (O). Trong hình nón, người ta đặt một hình chóp D.ABC có đáy ABC là tam giác cân tại A, nội tiếp đường tròn (O) và BAC = 120°. Đỉnh D nằm trên mặt xung quanh của hình nón, các mặt bên của hình chóp tạo với đáy một góc bằng nhau. a) Chứng minh D thuộc đường thẳng SA. b) Tính thể tích khối nón khi thể tích khối chóp bằng 3. + Cho X = {n thuộc Z | -5 =< n =< 5} và X là tập hợp các hàm số f(x) = ax4 + bx2 + c có a, b, c thuộc X và f(x) có 3 điểm cực trị. Chọn ngẫu nhiên f(x) từ X, tính xác suất để gốc tọa độ O nằm hoàn toàn trong tam giác tạo thành từ ba điểm cực trị của đồ thị f(x).
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bắc Giang
Thứ Bảy ngày 06 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang được biên soạn theo dạng đề thi trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho hai mặt phẳng (P), (Q) song song với nhau và cùng cắt khối cầu tâm O, bán kính R thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn này và có đáy là hình tròn còn lại. Khoảng cách h giữa hai mặt phẳng (P), (Q) khi diện tích xung quanh của hình nón lớn nhất là? + Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 6cm, BC = BB’ = 2cm. Gọi E là trung điểm cạnh BC. Một tứ diện đều MNPQ có hai đỉnh M và N nằm trên đường thẳng EC’, hai đỉnh P và Q nằm trên đường thẳng đi qua điểm B và cắt đường thẳng AD tại điểm F. Độ dài đoạn thẳng A’F bằng? + Cho hàm số y = x3 – 3mx2 + 3(m2 – 1)x – m3 – m (với m là tham số) và điểm I(2;-2). Gọi S là tập hợp các giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị A, B sao cho tam giác IAB nội tiếp đường tròn có bán kính bằng √5. Tích các phần tử của tập S là?
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Thái Bình; đề gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thái Bình : + Để đủ tiền mua nhà, anh Ba vay ngân hàng 400 triệu đồng theo phương thức lãi kép với lãi suất 0,8%/tháng. Nếu sau mỗi tháng, kể từ ngày vay, anh Ba trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả lãi vay và tiền gốc. biết rằng lãi suất không thay đổi trong suốt quá trình anh Ba trả nợ. Hỏi sau bao nhiêu tháng thì anh Ba trả hết nợ ngân hàng? + Một khối gạch hình lập phương (không thấm nước) có cạnh bằng 2 được đặt vào trong một chiếc phễu hình nón đầy nước theo cách như sau: Một cạnh của viên gạch nằm trên mặt nước (nằm trên một đường kính của mặt đáy hình nón), các đỉnh còn lại nằm trên mặt mặt nón, tâm của viên gạch nằm trên trục hình nón (như hình vẽ). Tính thể tích nước còn lại trong phễu (làm tròn đến hai chữ số thập phân). + Ba chiếc bình hình trụ cùng chứa một lượng nước như nhau, độ cao mực nước trong bình II gấp đôi bình I và trong bình III gấp đôi bình II. Chọn nhận xét đúng về bán kính đáy r1, r2, r3 của ba bình I, II, III. A. r1, r2, r3 theo thứ tự lập thành một cấp số nhân công bội 1/2. B. r1, r2, r3 theo thứ tự lập thành một cấp số nhân công bội √2. C. r1, r2, r3 theo thứ tự lập thành một cấp số nhân công bội 1/√2. D. r1, r2, r3 theo thứ tự lập thành một cấp số nhân công bội 2.