Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 3 năm 2022 2023 trường THCS Anh Sơn Nghệ An

Nội dung Đề thi thử Toán vào lần 3 năm 2022 2023 trường THCS Anh Sơn Nghệ An Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2022 – 2023 của trường THCS Anh Sơn, Nghệ An. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một số câu hỏi trong đề thi như sau:

1. Tìm a và b để đồ thị của hàm số y = ax + b song song với đường thẳng 3x + y = 5 và cắt trục hoành tại điểm có hoành độ bằng 2.

2. Giải bài toán bằng cách lập phương trình hoặc lập hệ phương trình: Thành phố du lịch A và B trong tháng 3/2022 đã đón 8,5 triệu lượt khách du lịch. Sang tháng 4/2022, lượt khách ở thành phố A tăng 20%, ở thành phố B tăng 15% nên tổng số khách đến cả hai thành phố là 10 triệu. Hỏi mỗi thành phố A và B đã đón bao nhiêu lượt khách du lịch trong tháng 3/2022?

3. Câu hỏi về tam giác ABC, với dây cố định BC của đường tròn (O; R). Điểm A di chuyển trên đường tròn sao cho tam giác ABC có ba góc nhọn. Hãy chứng minh những tính chất sau: a) Tứ giác AHDK nội tiếp, b) HK vuông góc với đường kính AQ của đường tròn, c) Tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định khi E, F là các điểm trên đường tròn.

Đề thi sẽ giúp các em học sinh ôn tập kiến thức cũng như làm quen với cấu trúc đề thi tuyển sinh vào lớp 10. Để tải file WORD của đề thi, vui lòng click vào đường link dưới đây. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Thái Bình (đề chung)
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Thái Bình (đề chung) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) Đề tuyển sinh môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi. Kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung): Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2/2 và hai đường thẳng (d1): y = 5x + 2, (d2): y = (m^2 + 1)x + m (với m là tham số). 1. Tìm m để (d1) song song với (d2). 2. Tìm m để (d2) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho Q = x1 + x2 – 4x1x2 đạt giá trị nhỏ nhất. Cho phương trình x^2 – 2(m + 1)x + m^2 – 3m = 0 (với m là tham số). 1. Giải phương trình với m = 0. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: (x1 + 2)(x2 + 2) = 10. Cho đường tròn (O;R) đường kính AB. Trên tia AB lấy điểm C nằm ngoài đường tròn, kẻ đường thẳng d vuông góc với AB tại C. Gọi E là trung điểm của đoạn thẳng OB, đường thẳng đi qua E cắt đưòng tròn (O) ở M và N (M khác A và B). Tia AM, AN thứ tự cắt d ở P và Q. 1. Chứng minh tứ giác BCPM nội tiếp. 2. Chứng minh AM.AP = AN.AQ. 3. Giả sử MN = 7R/4. Tính độ dài đoạn ME, NE theo R. 4. Cho A, B, C cố định. Chứng minh rằng khi MN quay quanh điểm E (M khác A và B) thì tâm của đường tròn ngoại tiếp tam giác APQ luôn nằm trên một đường thẳng cố định.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT TP HCM
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT TP HCM Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT TP HCM Ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán chuyên cho năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM bao gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút. Đề thi có đáp án và lời giải chi tiết để học sinh tham khảo. Một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM: Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình 3^x – y^3 = 1. Trong tam giác ABC có đường tròn nội tiếp (I) tiếp xúc với các cạnh AB, BC, CA tại D, E, F. Khi kẻ đường kính EJ của đường tròn (I), chứng minh rằng E, F, L thẳng hàng. Cho tam giác nhọn ABC nội tiếp đường tròn (O). Chứng minh rằng các đường thẳng qua A1, B1, C1 lần lượt vuông góc với BC, CA, AB đồng quy. Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT TP HCM là cơ hội để học sinh thử sức, nâng cao kiến thức và kỹ năng giải bài toán. Đây cũng là bước quan trọng để học sinh chứng minh năng lực và đam mê trong lĩnh vực Toán học. Hy vọng các em học sinh sẽ vượt qua thử thách này một cách thành công và tự tin.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp
Nội dung Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp Đề thi tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 - 2021 của Sở Giáo dục và Đào tạo tỉnh Đồng Tháp. Kỳ thi sẽ diễn ra vào ngày 24 tháng 07 năm 2020, với đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi này mang đến cơ hội cho các em học sinh tham gia thi cử và thử sức đối với môn Toán chuyên, từ đó phát triển kiến thức và kỹ năng của mình. Qua những câu hỏi được thiết kế cẩn thận, các em sẽ có cơ hội thể hiện khả năng và chuẩn bị tốt nhất cho tương lai học tập và sự nghiệp. Hãy nhanh tay tải đề thi và bắt đầu chuẩn bị cho kỳ thi quan trọng này. Chúng tôi hy vọng rằng đề thi sẽ giúp các em có thêm động lực và tự tin trong quá trình ôn luyện. Chúc các em thi tốt!
Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc bao gồm 02 phần chính: phần trắc nghiệm và phần tự luận. Phần trắc nghiệm có 04 câu hỏi, chiếm 02 điểm. Phần tự luận có 04 câu hỏi, chiếm 08 điểm. Thời gian làm bài thi là 120 phút. Trích đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc: Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt thoả mãn điều kiện: (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. Một đội xe hàng ngày chở 140 tấn hàng, nhưng vượt mức 5 tấn mỗi ngày. Với việc vượt mức này, họ hoàn thành kế hoạch trước 1 ngày và chở thêm 10 tấn hàng. Hỏi số ngày dự kiến theo kế hoạch là bao nhiêu? Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC đến (O), và kẻ đường kính BD của đường tròn. Đường thẳng đi qua O vuông góc với đường AD và cắt AD, BC tại K, E. Chứng minh rằng các tứ giác ABOC, AIKE đều nội tiếp đường tròn, OI.OA = OK.OE, và tính độ dài đoạn thẳng BE khi biết OA = 5 cm, R = 3cm. Đề tuyển sinh này đưa ra các vấn đề khá phức tạp và đòi hỏi sự logic, kiến thức và kỹ năng tính toán từ phía thí sinh. Hy vọng các thí sinh sẽ tự tin và tỏa sáng trong kỳ thi sắp tới.