Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Lê Xoay - Vĩnh Phúc

Đề khảo sát chất lượng Toán 12 lần 1 năm học 2019 – 2020 trường THPT Lê Xoay – Vĩnh Phúc có mã đề 132, đề thi gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, nội dung kiểm tra chủ yếu xoay quanh các kiến thức Toán 12 học sinh đã được học, bên cạnh đó có một số ít bài toán trong chương trình Toán 11, kỳ thi được diễn ra nhằm đánh giá chất lượng Toán 12 giai đoạn giữa học kỳ 1, đồng thời kiểm tra rèn luyện kiến thức hướng đến kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Lê Xoay – Vĩnh Phúc : + Đường dây điện 110 KV kéo từ trạm phát (điểm A) trong đất liền ra đảo (điểm C). Biết khoảng cách ngắn nhất từ C đến B là 60 km, khoảng cách từ A đến B là 100 km, mỗi km dây điện dưới nước chi phí là 100 triệu đồng, chi phí mỗi km dây điện trên bờ là 60 triệu đồng. Hỏi điểm G cách A bao nhiêu km để mắc dây điện từ A đến G rồi từ G đến C chi phí thấp nhất? (Đoạn AB trên bờ và đoạn GC dưới nước). + Biết các số x + 6y, 5x + 2y, 8x + y theo thứ tự lập thành cấp số cộng và các số 1, x – y, x – 7y theo thứ tự lập thành cấp số nhân. Khi đó P = x + y có giá trị bằng? [ads] + Cho hàm số f(x) = x^4 – 4x^2 + 3 có đồ thị là đường cong trong hình bên. Hỏi phương trình (x^4 – 4x^2 + 3)^4 – 4(x^4 – 4x^2 + 3)^2 + 3 = 0 có bao nhiêu nghiệm thực phân biệt? + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số 1/(2f(x) – 1) là? + Từ tập hợp các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên 1 số. Tính xác suất để lấy được số có mặt đúng 3 chữ số khác nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi diễn tập THPT 2016 môn Toán chuyên Nguyễn Quang Diêu - Đồng Tháp
Đề thi diễn tập THPT Quốc gia 2016 môn Toán trường chuyên Nguyễn Quang Diêu – Đồng Tháp có đáp án và thang điểm chi tiết. Tóm tắt các ý chính có trong đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1. Câu 3: a) Tìm môđun của số phức w. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: a) Viết phương trình mặt cầu (S) có đường kính AB. b) Chứng minh (P) tiếp xúc với mặt cầu (S). Câu 6: a) Tính giá trị của biểu thức lượng giác P. b) Tìm số hạng trong khai triển nhị thức. Câu 7: Tính thể tích khối chóp S.ABCD và khoảng cách từ C đến mặt phẳng (SBD) theo a . Câu 8: Tìm tọa độ các đỉnh còn lại của hình chữ nhật ABCD biết rằng đỉnh B có hoành độ dương, đường trung tuyến kẻ từ B của tam giác ABD có hệ số góc nhỏ hơn 1. Câu 9: Tìm m để hệ phương trình tham số có hai nghiệm phân biệt. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường TH Cao Nguyên - Tây Nguyên lần 3
Đề thi thử Quốc gia 2016 môn Toán trường thực hành Cao Nguyên – Tây Nguyên lần 3 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 3. Câu 2: Tìm m để hàm số nghịch biến trên đoạn. Câu 3: a) Tìm số phức z thỏa mãn điều kiện. b) Giải bất phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (P) sao cho đường thẳng d’ là hình chiếu vuông góc của đường thẳng d lên mặt phẳng (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Tìm số hạng trong khai triển nhị thức Niu-tơn. Câu 7: Gọi M là trung điểm của DC. Tính theo a thể tích khối chóp S.ABM và khoảng cách giữa hai đường thẳng SA và BM. Câu 8: Tìm tọa độ các đỉnh A, B, C của tam giác ABC. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường B Nghĩa Hưng - Nam Định lần 2
Đề thi thử THPT Quốc gia 2016 môn Toán trường B Nghĩa Hưng – Nam Định lần 2 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để hàm số có cực trị. Câu 3: 1) Tìm số phức liên hợp và mô đun của số phức z. 2) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: 1) Lập phương trình mặt phẳng (P) qua A và vuông góc với đường thẳng d. 2) Lập phương trình mặt cầu có tâm I thuộc đường thẳng d, bán kính R = 2 và tiếp xúc với mặt phẳng (P). Câu 6: 1) Tính giá trị của biểu thức lượng giác. 2) Tính xác suất để tổng ba số ghi trên ba thẻ đó là một số lẻ. Câu 7: Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AB và SC theo a (a>0). Câu 8: Tìm tọa độ các điểm A, B, C. Câu 9: Giải hệ phương trình vô tỉ. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Khuyến - TP.HCM
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Khuyến – TP.HCM có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để đồ thị (C) cắt trục hoành tại 4 điểm phân biệt có hoành độ đều nhỏ hơn 2. Câu 3: a) Tính môđun của số phức w. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P). Viết phương trình tham số của đường thẳng d’ là hình chiếu vuông góc của đường thẳng d trên (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Chọn ngẫu nhiên từ hộp 4 quả cầu. Tính xác suất để 4 quả cầu lấy ra có đủ cả ba màu. Câu 7: Tính theo a thể tích khối hộp đã cho và khoảng cách từ điểm D đến mặt phẳng (A’BC). Câu 8: Tính diện tích tứ giác ABKC. Câu 9: Giải hệ phương trình vô tỉ. Câu 10: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 3 biến P.