Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Nguyễn Trãi Khánh Hòa

Nội dung Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Nguyễn Trãi Khánh Hòa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Nguyễn Trãi, tỉnh Khánh Hòa; đề thi có đáp án và thang điểm. Trích dẫn Đề cuối kỳ 1 Toán lớp 11 năm 2023 – 2024 trường THPT Nguyễn Trãi – Khánh Hòa : + Một nhà tuyển dụng đề nghị mức lương cho một kĩ sư ngành công nghệ thông tin trong 4 năm theo 2 phương án như sau: Phương án 1: Mức lương khởi điểm là 40.000.000 đồng (40 triệu đồng) một quý, lương trả theo quý, lương quý sau hơn lương quý trước 1.000.000 đồng (một triệu đồng). Phương án 2: Mức lương khởi điểm 10.000.000 đồng (10 triệu đồng) một tháng; lương trả theo tháng; lương tháng sau bằng 1,02 lần lương tháng trước liền kề. Nếu em là người kĩ sư trên, em sẽ nhận lương theo phương án nào. Vì sao? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SA lấy điểm E sao cho SA = 3AE; trên cạnh AD lấy điểm F thỏa FD = 2FA. Gọi M là giao điểm của AC và DI với I là trung điểm AB. Chứng minh rằng (MEF) // (SCD). + Ba số xyz theo thứ tự đó lập thành một cấp số nhân với công bội q khác 1; đồng thời các số xyz 2 3 theo thứ tự đó lập thành một cấp số cộng với công sai khác 0. Chọn khẳng định đúng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.