Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 chuyên đề phát triển bám sát đề tham khảo TN THPT 2024 môn Toán

Tài liệu gồm 438 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tuyển tập 50 chuyên đề phát triển bám sát đề tham khảo tốt nghiệp THPT năm 2024 môn Toán. MỤC LỤC : Dạng 1: Tìm giá trị cực đại, cực tiểu của hàm số thông qua bảng biến thiên. Dạng 2: Tìm nguyên hàm của hàm số cơ bản. Dạng 3: Tìm tập nghiệm của phương trình logarit cơ bản. Dạng 4: Tìm tọa độ vectơ đơn giản khi biết tọa độ điểm. Dạng 5: Tìm tiệm cận ngang của đồ thị hàm số hữu tỷ b1/b1. Dạng 6: Tìm hàm số khi biết bảng biến thiên. Dạng 8: Tìm vectơ chỉ phương của đường thẳng. Dạng 9: Tìm số phức khi biết điểm biểu diễn trên mp tọa độ. Dạng 10: Tìm phương trình mặt cầu khi biết tọa độ tâm và bán kính cụ thể. Dạng 11: Thu gọn biểu thức logarit cho trước. Dạng 12: Tìm khoảng đồng biến, nghịch biến của hàm số khi biết đồ thị hàm số. Dạng 13: Tìm thể tích khối lăng trụ khi biết diện tích đáy và chiều cao. Dạng 14: Tìm tập nghiệm của BPT mũ cơ bản. Dạng 15: Xét sự biến thiên của hàm số mũ và logarit. Dạng 16: Tìm tọa độ vectơ pháp tuyến của mặt phẳng cơ bản cho trước. Dạng 17: Tìm điểm cực trị của hàm số khi biết đạo hàm y’. Dạng 18: Tính tích phân của hàm số cơ bản sử dụng tính chất. Dạng 19: Tính tích phân cơ bản sử dụng định nghĩa và tính chất. Dạng 20: Tính thể tích khối chóp khi biết diện tích đáy và chiều cao. Dạng 21: Tìm tổng hai số phức. Dạng 22: Xác định các yếu tố liên qua đến hình nón. Dạng 23: Bài toán sử dụng hoán vị, chỉnh hợp, tổ hợp cơ bản. Dạng 24: Tìm nguyên hàm của hàm số mũ cơ bản. Dạng 25: Bài toán tương giao của hai đồ thị. Dạng 26: Tìm các yếu tố liên quan đến hình trụ. Dạng 27: Tìm các yếu tố liên quan đến cấp số cộng. Dạng 28: Tìm phần thực, phần ảo của số phức đơn giản. Dạng 29: Tìm phần thực, phần ảo của số phức có liên quan đến số phức cho trước. Dạng 30: Tìm góc của hai đường thẳng (hình học không gian 11). Dạng 31: Tìm khoảng cách điểm A đến mặt phẳng (hình học không gian 11). Dạng 32: Tìm khoảng đồng biến, nghịch biến khi biết đạo hàm y’. Dạng 33: Tìm xác suất dùng định nghĩa. Dạng 34: Tính tích phân sử dụng tính chất và định nghĩa. Dạng 35: Tính GTLN – GTNN của hàm số. Dạng 36: Biến đổi biểu thức logarit. Dạng 37: Tìm phương trình mặt cầu có tâm và đi qua một điểm cho trước. Dạng 38: Viết PTĐT đi qua một điểm và song song với một đường thẳng cho trước. Dạng 39: Tính giá trị của biểu thức logarit thỏa ĐK cho trước. Dạng 40: Tìm số giá trị tham số m nguyên để hàm số đơn điệu trên khoảng cho trước. Dạng 41: Tính tích phân của hàm số khi biết diện tích hình phẳng tạo bởi các đồ thị hàm số. Dạng 42: Tìm modun của tổng hai số phức thỏa các điều kiện cho trước. Dạng 43: Tính thể tích lăng trụ biết yếu tố về góc cho trước. Dạng 44: Tìm phương trình mặt phẳng thỏa mãn các điều kiện cho trước. Dạng 45: Tính thể tích khối trụ – ứng dụng thực tế. Dạng 46: Tìm GTLN – GTNN của hàm số logarit. Dạng 47: Tìm GTLN – GTNN của modun tổng, hiệu các số phức thỏa ĐK cho trước. Dạng 48: Tính thể tích của vật thể (ứng dụng tích phân vào thực tế). Dạng 49: Tìm giá trị nguyên của tham số m liên qua đến đạo hàm và hàm số hợp. Dạng 50: Bài toán liên quan đến ứng dụng để tìm cực trị hình học trong KG Oxyz.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bài toán thực tế Đoàn Văn Bộ
Nội dung Chuyên đề bài toán thực tế Đoàn Văn Bộ Bản PDF - Nội dung bài viết Chuyên đề bài toán thực tế của Đoàn Văn Bộ: Phương pháp giải bài toán thông qua Bất Phương trình Bậc Nhất Hai Ẩn Chuyên đề bài toán thực tế của Đoàn Văn Bộ: Phương pháp giải bài toán thông qua Bất Phương trình Bậc Nhất Hai Ẩn Chuyên đề này bao gồm 16 trang hướng dẫn cách giải các bài toán thực tế phổ biến do tác giả Đoàn Văn Bộ biên soạn. Phương pháp giải bài toán dựa vào kiến thức về Bất Phương trình Bậc Nhất Hai Ẩn và Hệ Bất Phương trình Bậc Nhất Hai Ẩn mà nhiều giáo viên trung học phổ thông thường bỏ qua khi giảng dạy. Việc giải bài toán kinh tế thường đòi hỏi xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này thường được nghiên cứu trong lĩnh vực toán học là Quy hoạch tuyến tính. Tuy nhiên, ở cấp độ trung học phổ thông, chúng ta chỉ cần xem xét và giải những bài toán đơn giản. Ngoài ra, chuyên đề còn đề cập đến một số bài toán thực tế và lý thuyết khác như Đạo hàm, Khảo sát hàm số và các khái niệm liên quan. Hy vọng thông qua việc học chuyên đề này, các bạn sẽ tự tin giải quyết các bài toán tương tự trong đề thi THPT Quốc gia.
Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn
Nội dung Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Bản PDF - Nội dung bài viết Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Hình học Oxy Oxyz và hình học không gian Trung tâm LTĐH Vĩnh Viễn Tài liệu với 298 trang này được biên soạn bởi đội ngũ giáo viên của Trung tâm luyện thi Vĩnh Viễn và bao gồm hình học Oxy – Oxyz và hình học không gian. Các nội dung chính trong cuốn sách bao gồm: Phần 1: Hình học giải tích trong mặt phẳng Oxy Bài 1: Phương pháp tọa độ trên mặt phẳng Oxy Bài 2: Đường thẳng Bài 3: Đường tròn Bài 4: Elip Bài 5: Hyperbol Bài 6: Parabol Phần 2: Hình học không gian Bài 1: Quan hệ song song Bài 2: Quan hệ vuông góc Bài 3: Các bài toán tính thể tích Phần 3: Hình học giải tích trong không gian Oxyz Bài 1: Hệ tọa độ trong không gian Bài 2: Mặt phẳng và các bài toán liên quan Bài 3: Mặt cầu Bài 4: Đường thẳng và các bài toán liên quan Cuốn sách được viết theo cấu trúc sẽ giúp học sinh hiểu được lý thuyết một cách có hệ thống và đầy đủ. Các dạng toán được phân loại và giải thích một cách dễ hiểu, đi kèm với nhiều bài tập mẫu từ dễ đến khó. Cuốn sách cũng bao gồm nhiều bài tập tự luyện được biên soạn một cách kỹ lưỡng theo đề thi tuyển sinh Đại học, với đáp án hoặc hướng dẫn giải chi tiết. Qua đó, cuốn sách sẽ giúp học sinh rèn luyện và nắm vững kiến thức hình học một cách hiệu quả để chuẩn bị tốt cho kỳ thi tuyển sinh.
Tổng hợp 14 chuyên đề luyện thi THPT Trung tâm LTĐH Diệu Hiền
Nội dung Tổng hợp 14 chuyên đề luyện thi THPT Trung tâm LTĐH Diệu Hiền Bản PDF - Nội dung bài viết Tổng hợp 14 chuyên đề luyện thi THPT - Trung tâm LTĐH Diệu Hiền Tổng hợp 14 chuyên đề luyện thi THPT - Trung tâm LTĐH Diệu Hiền Trong bộ sản phẩm này, Trung tâm LTĐH Diệu Hiền đã tổng hợp 14 chuyên đề luyện thi THPT để giúp học sinh ôn tập hiệu quả. Bộ tài liệu bao gồm các chuyên đề đa dạng, phong phú từ các môn học như Toán, Ngữ Văn, Vật Lý, Hóa Học, Sinh Học, Lịch Sử, Địa Lý, và nhiều môn khác. Thông qua việc luyện giải các đề thi trong bộ sản phẩm này, học sinh sẽ có cơ hội nắm vững kiến thức, rèn luyện kỹ năng giải đề, và chuẩn bị tốt nhất cho kỳ thi THPT sắp tới. Với cấu trúc bài tập logic, đa dạng và phong phú, bộ tài liệu này sẽ giúp học sinh tự tin hơn trong quá trình ôn tập và thi cử. Trung tâm LTĐH Diệu Hiền cam kết cung cấp cho học sinh bộ tài liệu chất lượng, uy tín và hiệu quả nhất để giúp họ đạt kết quả cao trong kỳ thi quan trọng của mình.
11 tập Kính Lúp Table giải toán bằng máy tính Casio Đoàn Trí Dũng
Nội dung 11 tập Kính Lúp Table giải toán bằng máy tính Casio Đoàn Trí Dũng Bản PDF - Nội dung bài viết Bộ sách Kính Lúp Table giúp giải toán bằng máy tính Casio của Đoàn Trí Dũng Bộ sách Kính Lúp Table giúp giải toán bằng máy tính Casio của Đoàn Trí Dũng Bộ sách Kính Lúp Table do thầy Đoàn Trí Dũng chủ biên gồm 11 tập, là sản phẩm của nhóm tác giả đã biên soạn cẩn thận. Với mỗi tập sách, người đọc sẽ được hướng dẫn cách sử dụng máy tính Casio để giải các dạng toán phương trình vô tỷ một cách hiệu quả. Từ việc đánh giá hàm đơn điệu đến việc chia đa thức nhiều căn, từ ép tích bằng ẩn phụ đến nhân liên hợp giải phương trình vô tỷ, từ ước chia tử đến kỹ thuật gán độ dài, mỗi tập sách trong bộ sách Kính Lúp Table đều mang đến cho người đọc những phương pháp giải toán thực tế và linh hoạt. Ngoài ra, các tập sách còn tập trung vào việc giúp người đọc hiểu rõ về cách thức giải toán bằng máy tính Casio, từ cơ bản đến nâng cao, từ người mới bắt đầu đến những người đã có kinh nghiệm. Điều này giúp tăng cường kỹ năng toán học của người đọc một cách toàn diện. Trong bộ sách, không chỉ có các phương pháp giải toán mà còn có những bài tập và ví dụ minh hoạ sinh động, giúp người đọc áp dụng kiến thức một cách linh hoạt và chính xác trong việc giải các bài toán thực tế. Với sự phong phú và chi tiết trong nội dung, bộ sách Kính Lúp Table chắc chắn sẽ là nguồn tư liệu hữu ích không chỉ cho học sinh mà còn cho giáo viên và những ai đam mê toán học.