Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 11 lần 3 năm 2018 - 2019 trường THPT Yên Lạc - Vĩnh Phúc

Vừa qua, trường THPT Yên Lạc, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lần thứ 3 dành cho học sinh khối 11 trong năm học 2018 – 2019, kỳ thi nhằm kiểm tra định kỳ để nhà trường và giáo viên bộ môn Toán theo dõi quá trình học tập môn Toán 11 của các em. Đề khảo sát Toán 11 lần 3 năm 2018 – 2019 trường THPT Yên Lạc – Vĩnh Phúc có mã đề 501, đề được biên soạn theo hình thức trắc nghiệm khách quan, phù hợp với yêu cầu thi Toán trắc nghiệm hiện hành, đề gồm 5 trang với 50 câu hỏi và bài toán, nội dung đề bao quát hết toàn bộ chương trình Toán 11, học sinh làm bài thi KSCL Toán 11 trong khoảng thời gian 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 11 lần 3 năm 2018 – 2019 trường THPT Yên Lạc – Vĩnh Phúc : + Một bàn cờ có nhiều ô vuông, người ta đặt 6 hạt dẻ vào ô vuông đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt dẻ nhiều hơn ô đầu tiên là 4, tiếp tục đặt vào ô thứ ba số hạt dẻ nhiều hơn ô thứ hai là 4 … và cứ thế tiếp tục đến ô cuối cùng. Biết rằng đặt hết số hạt dẻ trên bàn cờ người ta phải sử dụng hết 19 998 hạt dẻ. Hỏi bàn cờ có bao nhiêu ô? + Chọn mệnh đề sai trong các mệnh đề sau: A. Nếu 1 mặt phẳng chứa 1 đường thẳng vuông góc với mặt phẳng khác thì hai mặt phẳng đó vuông góc. B. Nếu hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ 3 thì giao tuyến của chúng vuông góc với mặt phẳng thứ 3. C. Nếu đường thẳng d vuông góc với 2 đường thẳng cắt nhau nằm trong mặt phẳng (P) thì d vuông góc với mọi đường thẳng nằm trong (P). D. Nếu 2 mặt phẳng (P) và (Q) vuông góc nhau thì mọi đường thẳng nằm trong (P) đều vuông góc với (Q). + Phát biểu nào sau đây sai? A. Nếu đường thẳng a song song với mp (P) thì mọi mặt phẳng (Q) chứa a mà cắt (P) thì cắt theo giao tuyến song song với a. B. Nếu hai mặt phẳng cắt nhau lần lượt đi qua 2 đường thẳng song song thì giao tuyến của chúng song song với hai đường thẳng đó (hoặc trùng với 1 trong 2 đường thẳng đó). C. Trong không gian, hai đường thẳng phân biệt không song song thì cắt nhau. D. Hai đường thẳng gọi là chéo nhau nếu chúng không đồng phẳng.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát lần 2 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề khảo sát lần 2 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 đề khảo sát lần 2 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh, đề có mã đề 178 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra chất lượng Toán lớp 11 thường xuyên trong giai đoạn đầu học kỳ 2 năm học 2019 – 2020. Trích dẫn đề khảo sát lần 2 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Mệnh đề nào sau đây là đúng? A. Qua điểm A và đường thẳng d xác định duy nhất một mặt phẳng. B. Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất. C. Qua ba điểm phân biệt xác định duy nhất một mặt phẳng. D. Nếu trên đường thẳng d có hai điểm phân biệt thuộc mp(α) thì mọi điểm trên d đều thuộc mp(α). + Trong các mệnh đề sau, mệnh đề nào Sai? A. Phép tịnh tiến biến một đường thẳng thành một đường thẳng song song với nó. B. Phép tịnh tiến biến một tam giác thành một tam giác đồng dạng với nó. C. Phép tịnh tiến biến một đoạn thẳng thành một đoạn thẳng bằng nó. D. Phép tịnh tiến biến một đường tròn thành một đường tròn có cùng chu vi với nó. [ads] + Từ các chữ số 0, 1, 2, 3, 4 lập các số tự nhiên có 4 chữ số khác nhau. Tính xác suất để số lập được có đúng 2 chữ số chẵn và 2 chữ số lẻ, đồng thời 2 chữ số đứng cạnh nhau thì không cùng tính chẵn, lẻ. + Cho tứ diện đều ABCD cạnh bằng 1. Gọi E là trung điểm BD; M là điểm thuộc cạnh BC sao cho BM = x (0 < x < 1). Mặt phẳng (α) qua M, song song với 2 đường thẳng AB và CE. (α) cắt các đoạn BD, AE, AC lần lượt tại N, P, Q. Tìm giá trị nhỏ nhất của biểu thức T = MP^2 + NQ^2. + Cho hình vuông ABCD cạnh a tâm O tập hợp điểm M sao cho MA.MC + MB.MD = a^2 là: A. Đường tròn tâm O, bán kính R = a. B. Đường tròn tâm O, bán kính R = a/√2. C. Đường tròn tâm O, bán kính R = a√2. D. Đường tròn tâm O, bán kính R = 2a. File WORD (dành cho quý thầy, cô):
Đề kiểm tra định kỳ lần 2 lớp 11 môn Toán năm 2019 2020 trường chuyên Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 2 lớp 11 môn Toán năm 2019 2020 trường chuyên Bắc Ninh Bản PDF Ngày … tháng 12 năm 2019, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng định kỳ lần thứ hai môn Toán lớp 11 năm học 2019 – 2020. Đề kiểm tra định kỳ lần 2 Toán lớp 11 năm 2019 – 2020 trường chuyên Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 04 trang với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề kiểm tra định kỳ lần 2 Toán lớp 11 năm 2019 – 2020 trường chuyên Bắc Ninh : + Cho X là tập hợp các số tự nhiên có 5 chữ số và đôi một khác nhau tạo nên từ các chữ số 0; 1; 3; 4; 5; 7; 8; 9. Lấy ngẫu nhiên một số từ tập X. Tính xác suất để số lấy được có chữ số đầu tiên không nhỏ hơn 5 (chữ số đầu tiên là chữ số hàng chục nghìn). + Trong mặt phẳng cho điểm O đường thẳng d không đi qua điểm O. Trong các mệnh đề sau, mệnh đề nào đúng? A. Phép quay tâm O biến d thành đường thẳng d’ cắt d tại một điểm duy nhất O. B. Phép tịnh tiến biến d thành đường thẳng d’ song song với d. C. Phép đối xứng tâm O biến d thành đường thẳng d’ song song hoặc trùng với d. D. Phép vị tự tâm O tỉ số k (k ≠ 0) biến d thành đường thẳng d’ song song hoặc trùng với d. [ads] + Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15 … 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 lần hoặc 2 lần nếu điểm ở lần quay đầu chưa thắng, và điểm số của người chơi được tính như sau: Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100. Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. File WORD (dành cho quý thầy, cô):
Đề kiểm tra chuyên đề lớp 11 môn Toán lần 1 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc
Nội dung Đề kiểm tra chuyên đề lớp 11 môn Toán lần 1 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT Quang Hà – Vĩnh Phúc tổ chức kỳ thi kiểm tra chuyên đề môn Toán lớp 11 lần thứ nhất năm học 2019 – 2020, nhằm khảo sát chất lượng Toán lớp 11 giai đoạn giữa học kỳ 1. Đề kiểm tra chuyên đề Toán lớp 11 lần 1 năm học 2019 – 2020 trường THPT Quang Hà – Vĩnh Phúc gồm có 02 mã đề: đề số 01 và đề số 02, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra chuyên đề Toán lớp 11 lần 1 năm 2019 – 2020 trường Quang Hà – Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;3), B(2;-1), đường thẳng d có phương trình: 2x – 3y + 5 = 0 và vectơ v = (1;−3). a) Tìm tọa độ điểm A’ là ảnh của A qua phép tịnh tiến theo vectơ v. b) Viết phương trình ∆ là ảnh của d qua phép tịnh tiến theo vectơ v. c) Viết phương trình đường tròn (C) có tâm A và đi qua B. Viết phương trình đường tròn (C’) là ảnh của (C) qua phép quay tâm O(0;0) góc quay 90 độ. [ads] + Xác định m để phương trình cos4x = (cos3x)^2 + m(sinx)^2 có nghiệm thuộc (0;pi/12). + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(3;2), B(1;4), C(1;1). Gọi M, N, P lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC. Giả sử M’, N’, P’ lần lượt là ảnh của M, N, P qua phép tịnh tiến theo vectơ AB. Tìm tọa độ tâm đường tròn nội tiếp tam giác M’N’P’.