Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2019 - 2020 trường Dương Quảng Hàm - Hưng Yên

Sáng thứ Năm ngày 19 tháng 12 năm 2019, trường THPT Dương Quảng Hàm, tỉnh Hưng Yên tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Dương Quảng Hàm – Hưng Yên (mã đề 001 và mã đề 126) gồm có 06 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp tự luận, phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 05 câu, chiếm 40% tổng số điểm, học sinh có 90 phút để hoàn thành bài thi HKI Toán 10, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường Dương Quảng Hàm – Hưng Yên : + Cho hệ phương trình (I): ax + by = c (1) và a’x + b’y = c’ (2) với phương trình (1) và (2) là phương trình bậc nhất hai ẩn. Hãy chọn khẳng định đúng. A. Giải hệ (I) là tìm một nghiệm chung của phương trình (1) và (2). B. Nghiệm chung của phương trình (1) và (2) được gọi là nghiệm của hệ (I). C. Phương trình (1) và (2) có vô số nghiệm nên hệ (I) có vô số nghiệm. D. Nếu phương trình (1) và (2) có nghiệm chung thì nghiệm chung đó phải là (0;0). [ads] + Trong các mệnh đề sau, mệnh đề nào là mệnh đề phủ định của mệnh đề “Vẫn còn có học sinh trường THPT Dương Quảng Hàm đi xe đạp điện không đội mũ bảo hiểm”. A. Không có học sinh nào của trường THPT Dương Quảng Hàm đi xe đạp điện đội mũ bảo hiểm. B. Có học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đội mũ bảo hiểm. C. Mọi học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đều đội mũ bảo hiểm. D. Mọi học sinh của trường THPT Dương Quảng Hàm đi xe đạp điện đều không đội mũ bảo hiểm. + Khách sạn A có 50 phòng. Mỗi phòng cho thuê với giá 400.000đ thì khách sạn kín phòng. Biết nếu cứ mỗi lần tăng giá thuê một phòng 20.000đ thì khách sạn có thêm 2 phòng trống. Bạn hãy giúp Giám đốc khách sạn A chọn giá phòng mới đề thu nhập của khách sạn trong ngày là lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Lê Quý Đôn - Hà Nội
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT Quang Trung - Hà Nội
Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội được biên soạn theo hình thức đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 35 câu, chiếm 07 điểm, phần tự luận gồm 03 câu, chiếm 03 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội : + Cho Parabol (P): y = x2 – 4x + m – 1 và đường thẳng (d): y = -2mx + 3. a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (P) khi m = 4. b) Tìm tất cả các giá trị thực của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ âm. + Giải phương trình √(21 – x2 – 4x) = x + 3. + Trong mặt phẳng Oxy, cho tam giác ABC có A(2;1), B(1;1), C(-3;4). a) Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC. b) Tìm tọa độ điểm M thuộc trục hoành sao cho (MA + MB) đạt giá trị nhỏ nhất.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 12 năm 2020, trường THCS & THPT Nguyễn Tất Thành, trực thuộc trường Đại học Sư Phạm Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, đề gồm 02 trang, phần trắc nghiệm gồm 12 câu (03 điểm), phần tự luận gồm 04 câu (07 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho A(1;2), B(-1;1), C(5;-1). a. Tính BA.CB và độ dài trung tuyến AM của tam giác ABC. b. Tìm tọa độ tâm đường tròn ngoại tiếp của tam giác ABC. + Cho tam giác ABC có AB = 2√2, AC = 3 và BAC = 135 độ. Gọi M là trung điểm của BC, điểm N thỏa mãn AN = x.AC với x thuộc R. Tìm x biết AM vuông góc với BN. + Biết phương trình (3m + 2n – 8)x = m – 3n + 1 có vô số nghiệm. Giá trị của biểu thức m2 + n2 bằng?
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT Bùi Thị Xuân - TP HCM
Thứ Ba ngày 22 tháng 12 năm 2020, trường THPT Bùi Thị Xuân, Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Bùi Thị Xuân – TP HCM gồm 03 bài toán Đại số (06 điểm) và 02 bài toán Hình học (04 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Bùi Thị Xuân – TP HCM : + Giải và biện luận phương trình sau theo tham số m: m^2.x = 6x – 4 + m(2 – x). + Cho tam giác ABC biết AB = 5; BC = 3, góc ABC = 120°. Lấy điểm N thuộc cạnh BC thỏa mãn đẳng thức BC = 3BN. a) Tính độ dài AC, bán kính đường tròn nội tiếp và đường cao AH của tam giác ABC. b) Tính CA.CN và độ dài AN. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các định A(-3;6), B(1;-2) và C(6;3). a) Tìm tọa độ trực tâm H của tam giác ABC. b) Gọi I là tâm đường tròn ngoại tiếp của tam giác ABC, tìm điểm K trên đường thẳng BC sao cho độ dài đoạn IK bằng 5√5.