Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra đội tuyển HSG lần 1 lớp 12 môn Toán năm 2020 2021 trường THPT Vĩnh Lộc Thanh Hóa

Nội dung Đề kiểm tra đội tuyển HSG lần 1 lớp 12 môn Toán năm 2020 2021 trường THPT Vĩnh Lộc Thanh Hóa Bản PDF Ngày 08 tháng 11 năm 2020, trường THPT Vĩnh Lộc (Thanh Hóa) phối hợp cùng trường THPT Thạch Thành (Thanh Hóa) tổ chức kỳ thi kiểm tra kiến thức đội tuyển học sinh giỏi môn Toán lớp 12 THPT năm học 2020 – 2021 lần thứ nhất. Đề kiểm tra đội tuyển HSG lần 1 Toán lớp 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra đội tuyển HSG lần 1 Toán lớp 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa : + Bốn người khách cùng ra khỏi quán và bỏ quên mũ. Chủ quán không biết rõ chủ của những chiếc mũ đó nên gửi trả cho họ một cách ngẫu nhiên. Tìm xác suất để cả bốn người cùng được trả sai mũ. + Số lượng của một loài vi khuẩn trong phòng thí nghiệm được tính theo công thức S(t) = A.e^rt. Trong đó, A là số lượng vi khuẩn ban đầu, S(t) là số lượng vi khuẩn có được sau thời gian t (phút), r > 0 là tỷ lệ tăng trưởng không đổi theo thời gian và t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có 500 con và sau 5 giờ có 1500 con. Hỏi sao bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn đạt 121500 con? + Bạn An muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90 cm. Bạn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với M, N thuộc cạnh BC; P, Q tương ứng thuộc cạnh AC và AB) để tạo thành hình trụ có chiều cao bằng MQ. Tính thể tích lớn nhất của chiếc thùng mà bạn An có thể làm được. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi tỉnh Toán THPT đợt 1 năm 2023 - 2024 sở GDĐT Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT đợt 1 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT đợt 1 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) lần lượt tiếp xúc với ba cạnh AB, BC, CA tại ba điểm M, N, K. Gọi S, R lần lượt là giao điểm của đường phân giác ngoài góc A của tam giác ABC với hai đường thẳng KN, MN. Gọi I là giao điểm của hai đường thẳng MS và KR, đường thẳng AN cắt đường tròn (O) tại điểm thứ hai là J. a) Chứng minh I thuộc (O) và sin MKN sin KMN KI KJ. b) Đường tròn ngoại tiếp tam giác AMK cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D, OD cắt MK tại E. Gọi (T) là đường tròn đi qua D và tiếp xúc với BC tại N. Chứng minh (T) tiếp xúc với đường tròn ngoại tiếp tam giác ABC và EN là đường phân giác của góc BEC. + Tô màu tất cả các đỉnh của đa giác đều (T) có 12 đỉnh bằng hai màu khác nhau, mỗi đỉnh tô một màu. a) Hỏi có bao nhiêu cách tô màu sao cho không có tam giác đều nào mà tất cả các đỉnh của nó cùng màu (các đỉnh của nó là đỉnh của (T))? b) Hỏi có bao nhiêu cách tô màu sao cho có ít nhất một đa giác đều mà tất cả các đỉnh của nó cùng màu (các đỉnh của nó là đỉnh của (T))?
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Tuyên Quang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tuyên Quang; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Tuyên Quang : + Cho hình nón N có đỉnh O và I là tâm của đáy, bán kính đáy R 5. Lấy điểm A trên đáy của hình nón N sao cho IA 3. Biết mặt phẳng P chứa đường thẳng OA và vuông góc với mặt phẳng OIA cắt mặt nón N theo một thiết diện có diện tích bằng S. Biết khoảng cách từ I đến mặt phẳng P bằng 12 5 giá trị của S bằng? + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ tập các chữ số A 0 1 2 3 4 5 6. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn là số chẵn, đồng thời chữ số đứng trước luôn lớn hơn chữ số đứng liền sau bằng? + Có 8 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 8 học sinh gồm 3 học sinh nữ và 5 học sinh nam ngồi vào hàng ghế đó (mỗi ghế có đúng một học sinh). Số cách xếp sao cho 3 học sinh nữ ngồi ở 3 ghế cạnh nhau bằng?
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 - 2024 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho hình chóp có SA ABCD đáy ABCD là hình thang vuông tại A và B AD BC AB. Góc giữa mặt phẳng SBC và mặt phẳng ABCD bằng 0 60. Gọi M là trung điểm của cạnh và là điểm thỏa mãn ID AI 2. Gọi E F lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB SC. Gọi H là giao điểm của hai đường thẳng SI và AM. a) Tính thể tích khối tứ diện CDMI và khoảng cách giữa hai đường thẳng AM và SC. b) Tính thể tích khối nón có đáy là hình tròn ngoại tiếp EFH và đỉnh thuộc mặt phẳng ABCD. + Cho hình lăng trụ đứng ABC A B C ABC vuông tại A AB AC 2. Gọi E là điểm thỏa mãn EC EC 2. Khoảng cách từ điểm C’ đến mặt phẳng ABE bằng 12. Gọi là góc giữa mặt phẳng ABE và mặt phẳng ABC. Tìm cos để thể tích khối lăng trụ ABC A B C đạt giá trị nhỏ nhất. + Trong không gian với hệ tọa độ Oxyz, cho các điểm B 9 1 4 C 9 7 4. Trong các ABC thỏa mãn điểm A thuộc mặt phẳng Oxy các đường trung tuyến kẻ từ đỉnh B và C vuông góc với nhau sao cho góc A lớn nhất. Viết phương trình mặt cầu đường kính OA với O là gốc tọa độ.
Đề học sinh giỏi Toán 12 năm 2023 - 2024 trường THPT Bình Chiểu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2023 – 2024 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 năm 2023 – 2024 trường THPT Bình Chiểu – TP HCM : + Một người vay tiền ở một ngân hàng theo hình thức lãi kép với lãi suất 0,7%/tháng với tổng số tiền vay là 1 tỉ đồng. Mỗi tháng người đó đều trả cho ngân hàng một số tiền như nhau để trừ vào tiền gốc và lãi. Biết rằng đúng 25 tháng thì người đó trả hết gốc và lãi cho ngân hàng. Hỏi số tiền của người đó trả cho ngân hàng ở mỗi tháng là bao nhiêu? + Một người đàn ông muốn chèo thuyền từ vị trí A tới điểm B về phía hạ lưu bờ đối diện càng nhanh càng tốt trên một bờ sông thẳng rộng 3km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến C và sau đó chạy đến B, hay có thể chèo trực tiếp đến B, hoặc anh ta có thể chèo thuyền đến một điểm D giữa B và C và sau đó chạy đến B. Biết anh ấy có thể chèo thuyền 6km/h, chạy bộ 8km/h và quãng đường BC=8km. Biết tốc độ dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Tính khoảng thời gian ngắn nhất (đơn vị: giờ) để người đàn ông đến B. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng qua AB và trung điểm M của SC cắt hình chóp theo thiết diện có chu vi bằng 7a. Tính thể tích của khối nón có đỉnh là S và đường tròn đáy ngoại tiếp tứ giác ABCD.