Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và các phương pháp giải toán chuyên đề giới hạn - Trần Đình Cư

Tài liệu gồm 55 trang phân dạng và hướng dẫn giải các dạng toán chuyên đề giới hạn, các bài tập trong tài liệu được giải chi tiết. Nội dung tài liệu: BÀI 1. GIỚI HẠN CỦA DÃY SỐ. Dạng 1. Sử dụng định nghĩa tìm giới hạn 0 của dãy số Dạng 2. Sử dụng định lí để tìm giới hạn 0 của dãy số Dạng 3. Sử dụng các giới hạn đặc biệt và các định lý để giải các bài toán tìm giới hạn dãy Dạng 4. Sử dụng công thức tính tổng của một cấp số nhân lùi vô hạn, tìm giới hạn, biểu thị một số thập phân vô hạn tuần hoàn thành phân số Dạng 5. Tìm giới hạn vô cùng của một dãy bằng định nghĩa Dạng 6. Tìm giới hạn của một dãy bằng cách sử dụng định lý, quy tắc tìm giới hạn vô cực MỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo} BÀI 2. GIỚI HẠN HÀM SỐ Dạng 1. Dùng định nghĩa để tìm giới hạn Dạng 2. Tìm giới hạn của hàm số bằng công thức Dạng 3. Sử dụng định nghĩa tìm giới hạn một bên Dạng 4. Sử dụng định lý và công thức tìm giới hạn một bên [ads] Dạng 5. Tính giới hạn vô cực Dạng 6. Tìm giới hạn của hàm số thuộc dạng vô định 0/0 Dạng 7. Dạng vô định Dạng 8. Dạng vô định MỘT SỐ DẠNG TOÁN NÂNG CAO {Tham khảo} BÀI 3. HÀM SỐ LIÊN TỤC Dạng 1. Xét tính liên tục của hàm số f(x) tại điểm x0 Dạng 2. Xét tính liên tục của hàm số tại một điểm Dạng 3. Xét tính liên tục của hàm số trên một khoảng K Dạng 4. Tìm điểm gián đoạn của hàm số f(x) Dạng 5. Chứng minh phương trình f(x)=0 có nghiệm MỘT SỐ BÀI TẬP LÝ THUYẾT {Tham khảo}

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề hàm số liên tục
Tài liệu gồm 36 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hàm số liên tục, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. I. KIẾN THỨC TRỌNG TÂM 1) Hàm số liên tục tại một điểm. 2) Hàm số liên tục trên một khoảng, trên một đoạn. 3) Tính chất của hàm số liên tục. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA + Dạng 1. Xét tính liên tục của hàm số tại một điểm. + Dạng 2. Xét tính liên tục của hàm số trên khoảng, đoạn. + Dạng 3. Ứng dụng tính liên tục trong giải phương trình. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề giới hạn hàm số
Tài liệu gồm 46 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề giới hạn hàm số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. I. KIẾN THỨC TRỌNG TÂM 1) Giới hạn của hàm số tại một điểm. a) Giới hạn hữu hạn. b) Giới hạn vô cực. 2) Giới hạn của hàm số tại vô cực. 3) Một số định lí về giới hạn hữu hạn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1. Sử dụng định nghĩa giới hạn dãy số và những quy tắc cơ bản. Dạng 2. Khử dạng vô định về 0/0. Dạng 3. Khử dạng vô định vô cực / vô cực hoặc 0.vô cực hoặc vô cực – vô cực. Dạng 4. Giới hạn một bên. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tài liệu chủ đề giới hạn dãy số
Tài liệu gồm 53 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề giới hạn dãy số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1. Dãy số có giới hạn hữu hạn. a. Giới hạn hữu hạn. b. Giới hạn đặc biệt. c. Định lí về giới hạn. d. Tổng của cấp số nhân lùi vô hạn. 2. Dãy số có giới hạn vô cực. a. Định nghĩa. b. Định lí. c. Một vài qui tắc tìm giới hạn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA + Dạng 1. Dãy số có giới hạn 0. + Dạng 2. Khử dạng vô định vô cực / vô cực. + Dạng 3. Khử dạng vô định vô cực – vô cực. + Dạng 4. Tổng của cấp số nhân lùi vô hạn. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Bài giảng giới hạn của hàm số
Tài liệu gồm 55 trang, tóm tắt lý thuyết SGK, hướng dẫn giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề giới hạn của hàm số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4. A. LÝ THUYẾT 1. Định nghĩa giới hạn của hàm số tại một điểm. 2. Định nghĩa giới hạn của hàm số tại vô cực. 3. Một số giới hạn đặc biệt. 4. Định lí về giới hạn hữu hạn. 5. Quy tắc về giới hạn vô cực. 6. Các dạng vô định. B. CÁC DẠNG TOÁN VỀ GIỚI HẠN HÀM SỐ Dạng 1. Tìm giới hạn xác định bằng cách sử dụng trực tiếp các định nghĩa, định lí và quy tắc. Dạng 2. Tìm giới hạn vô định. C. BÀI TẬP RÈN LUYỆN KỸ NĂNG Dạng 1. Bài tập tính giới hạn bằng cách sủ dụng định nghĩa, định lí và các quy tắc. Dạng 2. Giới hạn vô định dạng 0/0. Dạng 3. Giới hạn vô định dạng vô cực / vô cực. Dạng 4. Giới hạn vô định dạng 0 . Vô cực. Dạng 5. Dạng vô định vô cực – vô cực. D. HƯỚNG DẪN GIẢI CHI TIẾT Dạng 1. Bài tập tính giới hạn bằng cách sủ dụng định nghĩa, định lí và các quy tắc. Dạng 2. Giới hạn vô định dạng 0/0. Dạng 3. Giới hạn vô định dạng vô cực / vô cực. Dạng 4. Giới hạn vô định dạng 0 . Vô cực. Dạng 5. Dạng vô định vô cực – vô cực.