Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 9 tập 2 - Trần Công Dũng

Tài liệu gồm 95 trang, được biên soạn bởi thầy giáo Trần Công Dũng, bao gồm tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập môn Toán 9 tập 2, theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : PHẦN I Đại số 3. Chương 1 Hệ hai phương trình bậc nhất một ẩn 5. A Phương trình bậc nhất hai ẩn số 5. I Tóm tắt lý thuyết 5. II Phương pháp giải toán 6. III Bài tập luyện tập 7. B Hệ hai phương trình bậc nhất hai ẩn 9. I Tóm tắt lí thuyết 9. II Các dạng toán 9. C Giải hệ phương trình bằng phương pháp thế 12. I Tóm tắt lí thuyết 12. II Phương pháp giải toán 12. + Dạng 1. Giải hệ phương trình 12. + Dạng 2. Sử dụng hệ phương trình giải toán 15. D Giải hệ phương trình bằng phương pháp cộng 17. I Tóm tắt lí thuyết 17. II Các dạng toán 18. + Dạng 1. Giải hệ phương trình 18. + Dạng 2. Sử dụng hệ phương trình giải toán 20. III Bài tập luyện tập 20. E Giải bài toán bằng cách lập hệ phương trình 22. I Tóm tắt lí thuyết 22. II Các dạng toán 22. + Dạng 1. Bài toán chuyển động 22. + Dạng 2. Bài toán vòi nước 24. Chương 2 Hàm số y = ax2. Phương trình bậc hai một ẩn số 27. A Hàm số y = ax2 (a khác 0) 27. I Tóm tắt lí thuyết 27. II Phương pháp giải toán 27. B Đồ thị hàm số y = ax2 (a khác 0) 28. I Tóm tắt lí thuyết 28. II Phương pháp giải toán 29. C Phương trình bậc hai một ẩn số 32. I TÓM TẮT LÍ THUYẾT 32. II PHƯƠNG PHÁP GIẢI TOÁN 32. III BÀI TẬP LUYỆN TẬP 34. D Công thức nghiệm của phương trình bậc hai 35. I Tóm tắt lí thuyết 35. II Các dạng toán 35. + Dạng 1. Giải phương trình bậc hai 36. + Dạng 2. Điều kiện có nghiệm của phương trình bậc hai. 37. + Dạng 3. Nghiệm nguyên và nghiệm hữu tỉ của phương trình bậc hai 39. III Bài tập luyện tập 39. E HỆ THỨC VI-ÉT VÀ CÁC ỨNG DỤNG 41. I TÓM TẮT LÍ THUYẾT 41. + Dạng 1. Nhẩm nghiệm của phương trình bậc hai 42. + Dạng 2. Tìm hai số biết tổng và tích của chúng 44. + Dạng 3. Tìm giá trị của biểu thức đối xứng giữa các nghiệm 48. + Dạng 4. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số 49. + Dạng 5. Xét dấu các nghiệm 52. + Dạng 6. Tìm giá trị của tham số để các nghiệm của phương trình thỏa mãn điều kiện cho trước 54. F PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI 59. I Phương pháp giải toán 59. + Dạng 1. Giải phương trình tích 59. + Dạng 2. Sử dụng ẩn phụ chuyển phương trình về phương trình bậc hai 60. + Dạng 3. Giải phương trình chứa ẩn ở mẫu 60. + Dạng 4. Giải phương trình bậc ba 61. + Dạng 5. Giải phương trình trùng phương 62. + Dạng 6. Giải phương trình hồi quy và phản hồi quy 63. + Dạng 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = m (1) với a + b = c + d 64. + Dạng 8. Phương trình dạng (x + a)4 + (x + b)4 = c (1) 65. + Dạng 9. Sử dụng phương trình bậc hai giải phương trình chứa dấu giá trị tuyệt đối 65. + Dạng 10. Sử dụng phương trình bậc hai giải phương trình chứa căn thức 66. II Bài tập 66. G GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH 70. I Tóm tắt lí thuyết 70. II Phương pháp giải toán 70. + Dạng 1. Bài toán chuyển động 70. + Dạng 2. Bài toán về số và chữ số 71. + Dạng 3. Bài toán vòi nước 72. + Dạng 4. Bài toán có nội dung hình học 72. + Dạng 5. Bài toán về phần trăm – năng suất 73. III Bài tập luyện tập 74. PHẦN II Hình học 75. Chương 3 Góc với đường tròn 77. A Góc ở tâm – Số đo cung 77. I Tóm tắt lí thuyết 77. II Phương pháp giải toán 77. III Bài tập tự luyện 78. B Liên hệ giữa cung và dây 79. I Tóm tắt lí thuyết 79. II Phương pháp giải toán 79. III Bài tập tự luyện 80. C Góc nội tiếp 80. I Tóm tắt lí thuyết 80. II Các dạng toán 81. + Dạng 1. Giải bài toán định lượng 81. + Dạng 2. Giải bài toán định tính 82. D Góc tạo bởi tiếp tuyến và dây cung 84. I Tóm tắt lí thuyết 84. II Các dạng toán 84. + Dạng 1. Giải bài toán định tính 84. + Dạng 2. Giải bài toán định lượng 85. III Bài tập tự luyện 85. E Góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn 86. I Tóm tắt lý thuyết 86. II Phương pháp giải toán 87. III Bài tập luyện tập 88.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập chuyên đề hàm số
Nội dung Lý thuyết và bài tập chuyên đề hàm số Bản PDF - Nội dung bài viết Lý thuyết và bài tập chuyên đề hàm sốCHỦ ĐỀ 1: HÀM SỐ BẬC NHẤTCHỦ ĐỀ 2: HÀM SỐ Y = AXCHỦ ĐỀ 3: HÀM SỐ Y = AX + BCHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Lý thuyết và bài tập chuyên đề hàm số Tài liệu này bao gồm 55 trang lý thuyết quan trọng và hướng dẫn cách giải các bài toán liên quan đến hàm số và đồ thị hàm số như y = ax, y = ax + b, y = ax^2, trong chương trình Toán lớp 9. Đây là tài liệu phù hợp để ôn luyện và nâng cao kiến thức Toán của học sinh lớp 9, bồi dưỡng học sinh giỏi môn Toán, và luyện thi vào lớp 10. Chi tiết nội dung tài liệu lý thuyết và bài tập chuyên đề hàm số: CHỦ ĐỀ 1: HÀM SỐ BẬC NHẤT Nếu y phụ thuộc vào x và mỗi giá trị của x tương ứng với duy nhất một giá trị của y, thì y được gọi là hàm số của x. Đồ thị của hàm số y = f(x) là tập hợp các điểm biểu diễn các cặp giá trị (x;f(x)) trên mặt phẳng tọa độ. Y là hàm hằng nếu y luôn nhận một giá trị không đổi khi x thay đổi. Hàm số đồng biến và hàm số nghịch biến. CHỦ ĐỀ 2: HÀM SỐ Y = AX Hàm số y = ax (a khác 0) xác định với mọi số thực a. Đồ thị của hàm số y = ax là một đường thẳng đi qua gốc tọa độ. Hàm số y = ax đồng biến khi a > 0 và nghịch biến khi a < 0. CHỦ ĐỀ 3: HÀM SỐ Y = AX + B Hàm số bậc nhất: y = ax + b, với a và b là số thực và a khác 0. Hàm số y = ax + b (a khác 0) xác định với mọi số thực. Hàm số y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0. Đồ thị của hàm số bậc nhất là một đường thẳng cắt cả hai trục tọa độ. CHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Hàm số y = ax^2 (a khác 0) xác định với mọi x thuộc R. Nếu a > 0, hàm số nghịch biến với x < 0, đồng biến với x > 0, và bằng 0 với x = 0. Nếu a < 0, hàm số đồng biến với x < 0, nghịch biến với x > 0, và bằng 0 với x = 0. Đồ thị của hàm số là một parabol đi qua gốc tọa độ và có trục tung là trục đối xứng. Đây là những kiến thức căn bản và quan trọng về hàm số mà học sinh cần nắm vững để có thể giải quyết các bài toán Toán hiệu quả. Hãy ôn tập và áp dụng những kiến thức này vào thực hành để nâng cao trình độ Toán của bạn!
Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan
Nội dung Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan Bản PDF - Nội dung bài viết Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quanVấn đề 1: Các công thức biến đổi căn thứcVấn đề 2: Cách tìm điều kiện trong bài toán chứa căn thứcVấn đề 3: Các dạng toán biến đổi căn thức thường gặpVấn đề 4: Dùng ẩn phụ để đơn giải hóa bài toánVấn đề 5: Các bài toán về tính tổng dãy có quy luậtVấn đề 6: Rút gọn biểu thức chưa một hay nhiều ẩnVấn đề 7: Rút gọn biểu thức và bài toán liên quan Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan Tài liệu này được sưu tầm và tổng hợp bởi tác giả Trịnh Bình, nhằm giúp học sinh lớp 9 và thí sinh tuyển sinh vào lớp 10 ôn tập và rèn luyện kỹ năng giải các dạng toán liên quan đến rút gọn biểu thức chứa căn. Đây là một chủ đề quan trọng và thường xuyên xuất hiện trong chương trình Toán. Trong tài liệu này, có đầy đủ các phần sau: Vấn đề 1: Các công thức biến đổi căn thức Giúp học sinh hiểu rõ hơn về cách biến đổi các biểu thức chứa căn. Vấn đề 2: Cách tìm điều kiện trong bài toán chứa căn thức Hướng dẫn cách xác định các điều kiện cần thiết khi giải bài toán chứa căn. Vấn đề 3: Các dạng toán biến đổi căn thức thường gặp Trình bày các dạng toán phổ biến mà học sinh cần nắm vững. Vấn đề 4: Dùng ẩn phụ để đơn giải hóa bài toán Hướng dẫn cách sử dụng ẩn phụ để giải quyết bài toán một cách hiệu quả. Vấn đề 5: Các bài toán về tính tổng dãy có quy luật Giúp học sinh rèn luyện kỹ năng tính tổng của dãy số có quy luật. Vấn đề 6: Rút gọn biểu thức chưa một hay nhiều ẩn Hướng dẫn cách rút gọn biểu thức chứa các ẩn một cách chính xác. Vấn đề 7: Rút gọn biểu thức và bài toán liên quan Mô tả các dạng bài toán từ lớp 1 đến lớp 13, từ việc tính giá trị đơn giản tới chứng minh biểu thức luôn âm hoặc dương. Tài liệu cũng bao gồm bài tập luyện tập và hướng dẫn chi tiết cách giải các bài tập, giúp học sinh nắm vững kiến thức và kỹ năng cần thiết trong chuyên đề này.
Tài liệu tự học lớp 9 môn Toán Nguyễn Chín Em (Tập 1)
Nội dung Tài liệu tự học lớp 9 môn Toán Nguyễn Chín Em (Tập 1) Bản PDF - Nội dung bài viết Tài liệu tự học Toán lớp 9 - Nguyễn Chín Em (Tập 1)PHẦN I. ĐẠI SỐChương 1. Căn bậc hai, căn bậc baChương 2. Hàm số bậc nhất Tài liệu tự học Toán lớp 9 - Nguyễn Chín Em (Tập 1) Tài liệu tự học lớp 9 môn Toán do thầy Nguyễn Chín Em biên soạn là tập hợp các kiến thức lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán lớp 9 trong giai đoạn học kỳ 1. PHẦN I. ĐẠI SỐ Chương 1. Căn bậc hai, căn bậc ba 1. Căn bậc hai A. Tóm tắt lý thuyết: Bao gồm các kiến thức về căn bậc hai và cách so sánh các căn bậc hai số học. B. Phương pháp giải toán: Hướng dẫn cách giải các bài toán liên quan đến căn bậc hai và hằng đẳng thức √A^2 = |A|. C. Bài tập tự luyện 2. Liên hệ giữa phép nhân và phép khai phương A. Tóm tắt lý thuyết: Đưa ra các định lí và phương pháp nhân các căn thức bậc hai. B. Các dạng toán C. Bài tập tự luyện 3. Rút gọn biểu thức có chứa căn bậc hai A. Tóm tắt lý thuyết B. Các dạng toán C. Bài tập tự luyện Chương 2. Hàm số bậc nhất 1. Nhắc lại và bổ sung khái niệm về hàm số A. Tóm tắt lý thuyết: Cung cấp kiến thức về khái niệm hàm số, tập xác định của hàm số, hàm số đồng biến, nghịch biến. B. Các dạng toán C. Bài tập tự luyện 2. Hàm số bậc nhất A. Tóm tắt lý thuyết B. Phương pháp giải toán C. Bài tập luyện tập Với những kiến thức được biên soạn một cách cụ thể, dễ hiểu và phong phú, Tài liệu tự học Toán lớp 9 - Nguyễn Chín Em (Tập 1) là công cụ hữu ích giúp học sinh nắm vững kiến thức Toán trong chương trình học. Hãy cùng tham gia vào quá trình học tập và rèn luyện kỹ năng Toán với tài liệu này nhé!
Tài liệu học tập lớp 9 môn Toán chủ đề hàm số bậc nhất Trần Quốc Nghĩa
Nội dung Tài liệu học tập lớp 9 môn Toán chủ đề hàm số bậc nhất Trần Quốc Nghĩa Bản PDF - Nội dung bài viết Giới thiệu về tài liệu học tập lớp 9 môn Toán - Hàm số bậc nhất Giới thiệu về tài liệu học tập lớp 9 môn Toán - Hàm số bậc nhất Tài liệu học tập lớp 9 môn Toán chủ đề hàm số bậc nhất của thầy Trần Quốc Nghĩa là một tài liệu gồm 69 trang được biên soạn kỹ lưỡng. Trong tài liệu này, thầy đã tổng hợp lý thuyết, ví dụ và bài tập chủ đề hàm số bậc nhất trong chương trình Đại số lớp 9 chương 2. Mục lục của tài liệu học tập Toán lớp 9 chủ đề hàm số bậc nhất do Thầy Trần Quốc Nghĩa biên soạn bao gồm: Chủ đề 1: Nhắc lại và bổ sung các khái niệm về hàm số. A - Tóm tắt lý thuyết. B - Các ví dụ. C - Bài tập tự luyện. D - Câu hỏi trắc nghiệm. Chủ đề 2: Hàm số bậc nhất. A - Tóm tắt lý thuyết. B - Các ví dụ. C - Bài tập tự luyện. D - Câu hỏi trắc nghiệm. ... Qua việc tổng hợp lý thuyết, ví dụ và bài tập theo từng chủ đề, tài liệu giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải bài tập và áp dụng lý thuyết vào thực hành. Đồng thời, việc có sự hỗ trợ thông qua câu hỏi trắc nghiệm cũng giúp học sinh ôn tập và kiểm tra năng lực của mình một cách tổng quát và đa chiều.