Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Quận 9 TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Quận 9 TP HCM Bản PDF - Nội dung bài viết Đề thi học kỳ 1 Toán lớp 8 năm 2019 – 2020 phòng GD&ĐT Quận 9, TP Hồ Chí Minh Đề thi học kỳ 1 Toán lớp 8 năm 2019 – 2020 phòng GD&ĐT Quận 9, TP Hồ Chí Minh Trong đề thi học kỳ 1 Toán lớp 8 năm 2019 – 2020 của phòng GD&ĐT Quận 9, TP Hồ Chí Minh, có nhiều bài tập thú vị và hấp dẫn. Dưới đây là một số bài tập đáng chú ý trong đề thi: Bài 1: Một người thợ làm bánh thiết kế một chiếc bánh cưới có 3 tầng hình tròn. Tầng đáy có đường kính CH = 40cm. Tầng thứ 1 có đường kính EF nhỏ hơn đường kính tầng đáy CH là 20cm. Hãy tính độ dài đường kính DG của tầng 2. Bài 2: Kết thúc học kỳ I, nhóm gồm 10 bạn học sinh tổ chức đi du lịch. Sau khi đã hợp đồng xong, vào giờ chót có 2 bạn bận việc đột xuất không đi được. Mỗi bạn còn lại phải trả thêm 50,000 đồng so với dự kiến ban đầu. Hỏi tổng chi phí chuyến đi là bao nhiêu tiền? Bài 3: Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh tứ giác ABDC là hình chữ nhật. Gọi E là điểm đối xứng của A qua B. Chứng minh tứ giác BEDC là hình bình hành. EM cắt BD tại K. Chứng minh: EK = 2KM. Đây là một số bài tập khó, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của các em học sinh. Việc lời giải chi tiết và hướng dẫn chấm điểm cũng được cung cấp để giúp các em hiểu rõ hơn về các vấn đề cần giải quyết trong từng bài tập. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi học kỳ 1!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Cho tam giác ABC đường phân giác BD. Từ D kẻ đường thẳng song song với AB cắt BC tại E. Từ D kẻ đường thẳng song song với BC cắt AB tại F. a) Chứng minh tứ giác BEDF là hình thoi. b) Vẽ M đối xứng với F qua B. Tứ giác BDEM là hình gì? Vì sao? c) Lấy N đối xứng với E qua B. Chứng minh tứ giác MNFE là hình chữ nhật. d) Lấy P là một điểm bất kì trên đường thẳng BD, Q là điểm đối xứng với P qua A. Khi P chạy trên đường thẳng BD cố định thì Q chạy trên đường thẳng cố định nào? + Cho biểu thức 2 2 3 3 2 3 6 2 2 2 4 x x x x P x x x x a) Rút gọn biểu thức P. b) Tính các giá trị của biểu thức P khi x 3 c) Tìm các giá trị nguyên của x để biểu thức P đạt giá trị nguyên. + Tìm giá trị lớn nhất của biểu thức 2 2020 2021 x C.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Công Trứ – Hà Nội : + Giữa hai điểm A và B là một hồ nước sâu. Biết A B lần lượt là trung điểm của MC MD (xem hình vẽ). Bạn An đi từ C đến D với vận tốc 180 m/phút hết 2 phút 30 giây. Hỏi hai điểm A và B cách nhau bao nhiêu mét? + Cho ABC cân tại A, trung tuyến AH. Lấy điểm D đối xứng với A qua H. a) Chứng minh rằng: Tứ giác ABDC là hình thoi. b) Qua A kẻ đường thẳng vuông góc với AH cắt tia DC tại E. Tứ giác ABCE là hình gì ? Vì sao ? c) Tìm điều kiện của ABC để tứ giác ABCE là hình thoi ? d) Gọi I là trung điểm của AE. Chứng minh rằng : AC BE HI đồng quy. + Cho biểu thức 2 2 x B x x. a) Tính giá trị biểu thức B khi x 3. b) Rút gọn biểu thức 2 2 1 1 A 2 4 2 2 x x x x x. c) Cho biểu thức P A B. Tìm x nguyên để biểu thức P đạt giá trị nguyên.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Trãi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Trãi, quận Hà Đông, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội : + Cho ∆ ABC vuông tại A (AB > AC). Gọi O là trung điểm BC. Lấy D đối xứng với A qua O. a) Chứng minh. Tứ giác ABDC là hình chữ nhật b) Cho AC = 6cm; AD = 10cm. Tính diện tích tứ giác ABDC c) Lấy E đối xứng với D qua BC. Từ E kẻ đường thẳng vuông góc với AB đường này cắt BC tại F. Chứng minh EFDB là hình thoi d) Chứng minh CE vuông góc với EB. + Cho biểu thức 2 2 5 1 3 2 3 6 2 x A x x x x x và 7 2 B x với 2 x a) Tính giá trị của biểu thức B khi 2 x 4 0 b) Rút gọn A c) Tìm x nguyên để biểu thức P A B có giá trị nguyên. + Cho a b c là các số dương thỏa mãn 3 3 3 a b c abc 3. Hãy tính giá trị của biểu thức 2020 2020 2020 2020 2020 2020.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Tri Phương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội : + Cho hình chữ nhật ABCD. Gọi O là giao điểm của AC và BD. Vẽ I là trung điểm của BC, E là điểm đối xứng với O qua I. 1) Chứng minh tứ giác BOCE là hình thoi. 2) Gọi K là giao điểm của tia CE và tia AB. Chứng minh tứ giác BDCK là hình bình hành và ba điểm D, K, I thẳng hàng. 3) DK cắt AC và BE lần lượt tại M và N: a) Chứng minh M là trung điểm của DN b) Chứng minh DM MN NK. 4) Tìm điều kiện của hình chữ nhật ABCD để tứ giác BOCE là hình vuông. + Cho biểu thức 5 3 x A x và 2 2 2 3 9 3 9 x x x B x x với x 3. 1) Tính giá trị của biểu thức A khi x 2. 2) Rút gọn biểu thức B. 3) Cho P B A. Tìm giá trị nguyên dương của x để P có giá trị nguyên. + Cho x; y; z đôi một khác nhau thỏa mãn: 2 2 2 2020 x y z x y y z z x. Tính giá trị biểu thức: 2 2 2 2014.