Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội

Nội dung Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Chào các thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này sẽ được sử dụng cho mọi thí sinh dự tuyển vào các chuyên ngành, Toán chung, Toán điều kiện và vòng 1 của kỳ thi. Đề thi sẽ diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022. Với sự chuẩn bị cẩn thận, đề thi sẽ có đáp án và lời giải chi tiết do các tác giả uy tín thực hiện, bao gồm Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi và thu được lãi 10% của giá nhập. Nếu cửa hàng tăng giá bán thêm 5% và chiết khấu cho khách 245000 đồng, lãi sẽ lên 12% của giá nhập. Hãy tìm giá tiền khi nhập về của chiếc tivi đó. Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD. Hãy chuẩn bị tâm lý và kiến thức tốt để chinh phục đề thi tuyển sinh năm nay. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên: Cho số nguyên dương n sao cho 2n + 1 và 3n + 1 đều là các số chính phương. Chứng minh rằng số 15n + 8 là hợp số. Bạn Chi được thưởng kẹo mỗi ngày, nhưng trong 7 ngày liên tiếp, tổng số kẹo Chi nhận không quá 10 chiếc. Chứng minh rằng trong một số ngày liên tiếp, tổng số kẹo Chi nhận là 27 chiếc. Cho đường tròn (I;r) nội tiếp tam giác ABC. Một số điểm và đường tròn khác đã được xác định. Chứng minh hai điều kiện quan trọng về tính chất và kích thước của các đường tròn và tam giác đều. Đề tuyển sinh này giúp học sinh thử thách khả năng giải quyết vấn đề và logic trong môn Toán. Nó cung cấp cơ hội cho học sinh thể hiện kiến thức và kỹ năng một cách chi tiết và logic. Hy vọng rằng các thí sinh sẽ làm tốt trong kỳ thi sắp tới.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Cao Bằng Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Cao Bằng Vào thứ ... ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Cao Bằng đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020-2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở GD&ĐT Cao Bằng: Bác An đi x ô tô từ Cao Bằng đến Hải Phòng. Sau khi đi được nửa quãng đường, bác An cho xe tăng vận tốc thêm 5 km/h nên thời gian đi nửa quãng đường sau ít hơn thời gian đi nửa quãng đường đầu là 30 phút. Hỏi lúc đầu bác An đi xe với vận tốc bao nhiêu? Biết rằng khoảng cách từ Cao Bằng đến Hải Phòng là 360 km. Cho tam giác ABC vuông tại A. Biết AB = 6cm, AC = 8cm. Tính độ dài cạnh BC và độ dài đoạn AH, trong đó H là điểm kẻ đường cao từ A xuống BC. Các câu hỏi trên đề tuyển sinh thể hiện sự đa dạng và tính logic trong việc giải các bài toán toán học. Để thành công trong kỳ thi tuyển sinh, học sinh cần rèn luyện kỹ năng giải toán một cách logic và chính xác.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Lạng Sơn Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Lạng Sơn Vào ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lạng Sơn đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề tuyển sinh lớp 10 THPT môn Toán của sở GD&ĐT Lạng Sơn gồm có 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Lạng Sơn bao gồm các câu hỏi sau: Câu 1: Bài toán về tứ giác ACEM được đặt trên nửa đường tròn với các điểm A, C, E, M tương ứng. Học sinh cần chứng minh tứ giác ACEM nội tiếp trong một đường tròn và các bước giải chi tiết. Câu 2: Bài toán về tiếp tuyến của nửa đường tròn tại điểm C cắt đường thẳng MN tại F. Yêu cầu chứng minh tam giác CEF là tam giác cân. Câu 3: Bài toán về giao điểm H của NB với nửa đường tròn và cần chứng minh HF là tiếp tuyến của nửa đường tròn. Câu 4: Bài toán tính toán chiều dài và chiều rộng của mảnh vườn hình chữ nhật có chu vi và diện tích cho trước. Câu 5: Bài toán về tìm tham số m để phương trình bậc hai có hai nghiệm phân biệt thỏa mãn một điều kiện cụ thể. Đề thi tuyển sinh Toán năm 2020 - 2021 sở GD&ĐT Lạng Sơn mang tính chất thực tế, đòi hỏi học sinh phải áp dụng kiến thức và kỹ năng giải quyết vấn đề một cách logic và chính xác.
Đề tuyển sinh THPT chuyên môn Toán năm 2020 2021 sở GD ĐT Hải Phòng
Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2020 2021 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hải Phòng Đề tuyển sinh THPT chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hải Phòng Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hải Phòng bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi được trích dẫn từ đề tuyển sinh: 1. Cho tam giác vuông ABC tại A (AB < AC), M là trung điểm cạnh BC. P là một điểm di động trên đoạn AM. Câu hỏi yêu cầu chứng minh một số điều kiện về các điểm trong tam giác. 2. Tìm số lượng phần tử tối đa của một tập hợp con của tập hợp {1; 2; 3; ...; 1023} sao cho không chứa hai số nào mà số này gấp đôi số kia. 3. Giải phương trình ẩn x là x^2 - px + q = 0 với p, q là các số nguyên tố, và tìm tất cả các giá trị của p và q sao cho phương trình có nghiệm là các số nguyên dương. Đây là một số câu hỏi khó đòi hỏi các em học sinh có kiến thức chắc chắn và khả năng suy luận logic tốt để giải quyết. Chúc các em học sinh thành công trong kỳ thi tuyển sinh sắp tới!