Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa

Nội dung Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Trong kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 - 2021 do phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức vào Thứ Sáu ngày 09 tháng 04 năm 2021, đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa đã được ra đề. Đề thi này gồm 01 trang với tổng cộng 06 bài toán dạng tự luận, dành cho thí sinh lớp 7. Thời gian làm bài thi được quy định là 150 phút, đủ để học sinh tự tin trả lời các câu hỏi. Trong đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa, có một số bài toán khá thú vị như sau: + Bài toán 1: Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Yêu cầu chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB = AC = AE. + Bài toán 2: Cho A nằm trong góc xOy nhọn. Hãy tìm điểm B, C lần lượt thuộc trục Ox, Oy sao cho chu vi của tam giác ABC là nhỏ nhất. + Bài toán 3: Tìm các số nguyên dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Đây là những bài toán đòi hỏi sự tư duy logic và kiến thức Toán học sâu rộng của các thí sinh lớp 7. Chúc các em có một kỳ thi thành công và đạt kết quả tốt trong đề thi HSG huyện Toán năm 2020 - 2021!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2017 - 2018 trường THCS Vũ Phạm Khải - Ninh Bình
Đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2018. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C theo tỉ lệ số học sinh là 7:6:5. Nhưng sau đó vì có học sinh thuyển chuyển giữa 3 lớp nên phải chia lại theo tỉ lệ 6:5:4. Như vậy có lớp đã nhận được ít hơn theo dự định 12 quyển vở. Tính số vở mỗi lớp nhận được. + Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau: f(0) ≠0; f(1)=3; f(x)f(y)=f(x+y)+f(x-y) với mọi x, y. Tính giá trị của f(7). + Ba phân số có tổng bằng 213 70, các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 trường THCS Nguyễn Chích - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa : + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC H BC. Biết HBE = 50o; MEB = 25o. Tính HEM và BME. + Tìm hai số nguyên dương x và y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35; 210;12. + Tính giá trị biểu thức A.
Đề giao lưu học sinh giỏi Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho p và q là hai số nguyên tố lớn hơn 3 và thoả mãn p = q + 2. Tìm số dư khi chia p + q cho 12. + Cho A là một tập hợp gồm 10 chữ số. B là một tập con của A gồm 5 phần tử. Chứng minh rằng trong tập hợp các số có dạng x + y, với x, y là hai phần tử phân biệt thuộc B, có ít nhất 2 số có cùng chữ số hàng đơn vị. + Với mỗi số nguyên dương a, kí hiệu S(a) là số chữ số của a. Tìm số nguyên dương n để là số chẵn.