Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa

Nội dung Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Trong kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 - 2021 do phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức vào Thứ Sáu ngày 09 tháng 04 năm 2021, đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa đã được ra đề. Đề thi này gồm 01 trang với tổng cộng 06 bài toán dạng tự luận, dành cho thí sinh lớp 7. Thời gian làm bài thi được quy định là 150 phút, đủ để học sinh tự tin trả lời các câu hỏi. Trong đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa, có một số bài toán khá thú vị như sau: + Bài toán 1: Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Yêu cầu chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB = AC = AE. + Bài toán 2: Cho A nằm trong góc xOy nhọn. Hãy tìm điểm B, C lần lượt thuộc trục Ox, Oy sao cho chu vi của tam giác ABC là nhỏ nhất. + Bài toán 3: Tìm các số nguyên dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Đây là những bài toán đòi hỏi sự tư duy logic và kiến thức Toán học sâu rộng của các thí sinh lớp 7. Chúc các em có một kỳ thi thành công và đạt kết quả tốt trong đề thi HSG huyện Toán năm 2020 - 2021!

Nguồn: sytu.vn

Đọc Sách

Đề KSNL Toán 7 năm 2022 - 2023 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát năng lực học sinh môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình. Trích dẫn Đề KSNL Toán 7 năm 2022 – 2023 phòng GD&ĐT Thái Thụy – Thái Bình : + Trong kì khảo sát năng lực học sinh môn Toán của huyện A, ba khối 6, 7, 8 có tất cả 458 học sinh đăng kí tham gia. Khi khảo sát, khối 6 giảm đi 5 học sinh, khối 7 giữ nguyên, khối 8 giảm đi 3 học sinh nên số học sinh tham gia khảo sát của khối 6, 7, 8 lần lượt tỉ lệ với 6; 5; 4. Tính số học sinh mỗi khối đăng kí tham gia khảo sát. + Cho biểu thức E với a là số nguyên. Tìm giá trị nguyên nhỏ nhất của E. + Cho tam giác ABC vuông tại A và AB = AC. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Từ A kẻ đường thẳng vuông góc với BD tại K và cắt cạnh BC ở H. Từ E kẻ đường thẳng vuông góc với BD tại I và cắt cạnh BC ở G. Đường thẳng EG cắt đường thẳng AC tại Q. 1. Chứng minh AEQ = ADB và ABD = AQE. 2. Chứng minh A là trung điểm của QC và tam giác QBC vuông cân. 3. Chứng minh DH vuông góc với BC. 4. Chứng minh GB = GD.
Đề học sinh giỏi lần 2 Toán 7 năm 2022 - 2023 phòng GDĐT Thủ Đức - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi lần thứ 2 môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi lần 2 Toán 7 năm 2022 – 2023 phòng GD&ĐT Thủ Đức – TP HCM : + Một khối gỗ hình lăng trụ đứng tứ giác có đáy là hình chữ nhật có kích thước là 6dm, 5dm và chiều cao 7dm. Người ta khoét từ đáy một cái lỗ hình lăng trụ đứng tam giác, đáy là một tam giác vuông có 2 cạnh góc vuông là 3dm và 4 dm và cạnh huyền là 5 dm. a) Tính thể tích của khối gỗ sau khi khoét. b) Người ta cần sơn toàn bộ các mặt của khối gỗ, tính diện tích bề mặt phải sơn. + Người cha có một miếng đất hình vuông đem chia cho 5 người con. Người con cả nhận một phần tư miếng đất như hình bên. Phần đất còn lại người cha chia làm bốn phần bằng nhau để cho 4 người em. Hãy vẽ cách chia đó. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC, D là điểm thuộc đoạn BM (D khác B và M). Kẻ các đường thẳng BH, CI lần lượt vuông góc với đường thẳng AD tại H và I. a) Chứng minh: BAM = ACM và BH = AI. b) Chứng minh: Tam giác MHI vuông cần.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Một đơn vị công nhân sửa đường dự định phân chia số mét đường phải sửa cho 3 tổ: Tổ 1, Tổ 2, Tổ 3 tương ứng theo tỷ lệ 4 : 5 : 6. Nhưng sau đó, vì số người thay đổi nên đơn vị đã chia lại số mét đường phải sửa cho Tổ 1, Tổ 2, Tổ 3 tương ứng theo tỷ lệ 3 : 4 : 5. Do đó, có một tổ làm ít hơn dự định là 20m đường. Tính số mét đường đơn vị đã chia lại cho mỗi tổ. + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p + 1)(p − 1) chia hết cho 24. + Cho tam giác ABC vuông cân có đáy là BC. Gọi M, N lần lượt là trung điểm của AB và AC. Kẻ NH vuông góc với CM tại H. Kẻ HE vuông góc với AB tại E. Kẻ AK vuông góc với CM tại K. Kẻ AQ vuông góc với HN tại Q. 1. Chứng minh rằng AK = HC = AQ. Tính số đo góc BKA. 2. Chứng minh tam giác ABH cân và HM là tia phân giác của góc BHE. 3. Gọi I là điểm di động trên tia CA, J là điểm di động trên tia CB. Xác định vị trí các điểm I, J sao cho tam giác HJI có chu vi bé nhất.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chọn nguồn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đông Hưng, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Đông Hưng – Thái Bình : + Lúc ban đầu ba kho có tất cả 710 tấn thóc. Sau khi bán đi 1 5 số thóc ở kho I, 1 6 số thóc ở kho II và 1 11 số thóc ở kho III thì số thóc còn lại ở ba kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn thóc? + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME MA. a) Chứng minh rằng: AC EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ B kẻ BP AM từ C kẻ CQ AM (PQ AE). Chứng minh AP + AQ = 2AM. Cho tam giác ABC có BAC 15 ABC 45 trên tia đối của tia CB lấy điểm D sao cho CD 2CB. Tính số đo ADC. + Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng 2 2 2 ab bc ca a b c 2(ab bc ca).