Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình thoi

Nội dung Chuyên đề hình thoi Bản PDF - Nội dung bài viết Chuyên đề hình thoi Chuyên đề hình thoi Tài liệu này bao gồm 32 trang, tập trung vào việc tóm tắt lý thuyết quan trọng, phân loại các dạng toán và hướng dẫn cách giải các bài tập liên quan đến chuyên đề hình thoi. Ngoài ra, tài liệu cũng chọn lọc các bài tập từ cơ bản đến nâng cao trong chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Trong phần này, chúng ta sẽ tìm hiểu về các tính chất cơ bản của hình thoi và cách chứng minh chúng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Chứng minh tứ giác là hình thoi bằng cách sử dụng các dấu hiệu nhận biết. Ví dụ như tứ giác có bốn cạnh bằng nhau là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học khác. Ví dụ như hình thoi là tứ giác có bốn cạnh bằng nhau và có hai đường chéo vuông góc với nhau. Dạng 3. Tìm điều kiện để tứ giác là hình thoi bằng cách áp dụng các tính chất của hình thoi. Dạng 4. Tổng hợp các dạng toán liên quan đến hình thoi. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Phần này chứa những bài toán nâng cao giúp phát triển tư duy trong việc nhận biết và giải quyết các bài toán liên quan đến hình thoi. C. PHIẾU BÀI TỰ LUYỆN Chứa các bài tập tự luyện giúp học sinh ôn tập và củng cố kiến thức về hình thoi, từ việc chứng minh tứ giác là hình thoi đến việc áp dụng kiến thức để giải toán.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 45 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Phương trình có hệ số đối xứng. Dạng 2. Phương trình dạng x a x b x c x d k. Dạng 3. Phương trình đưa được về dạng phương trình trùng phương. Dạng 4. Giải phương trình bằng cách đặt ẩn phụ. Dạng 5. Nhẩm nghiệm đưa về phương trình tích. Dạng 6. Phương trình bậc cao. Dạng 7. Phương trình chứa ẩn ở mẫu. Dạng 8. Phương trình chứa dấu giá trị tuyệt đối.
Chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 24 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng tính chất 2 a a k. Dạng 2. Đưa về tổng các số chính phương. Dạng 3. Đưa về phương trình tích. Dạng 4. Đưa về ước số. Dạng 5. Sử dụng bất đẳng thức.
Chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8. 1. Phương pháp đặt nhân tử chung 2. 2. Phương pháp dùng hằng đẳng thức 2. 3. Phương pháp nhóm hạng tử 4. 4. Phối hợp nhiều phương pháp 6. 5. Phương pháp tách hạng tử 11. + Dạng 1. Phân tích đa thức thành nhân tử của đa thức bậc hai 11. + Dạng 2. Phân tích đa thức thành nhân tử của đa thức bậc ba 11. + Dạng 3. Phân tích đa thức thành nhân tử của đa thức bậc bốn 13. + Dạng 4. Phân tích đa thức thành nhân tử của đa thức bậc cao 15. 6. Phương pháp thêm bớt cùng một hạng tử 16. 7. Phương pháp đổi biến số (hay đặt ẩn phụ) 18. + Dạng 1. Đặt biến phụ (x2 + ax + m)(x2 + ax + n) + p 18. + Dạng 2. Đặt biến phụ dạng (x + a)(x + b(x + c)(x + d) + e 19. + Dạng 3. Đặt biến phụ dạng (x + a)4 + (x + b)4 + c 21. + Dạng 4. Đặt biến phụ dạng đẳng cấp 21. + Dạng 5. Đặt biến phụ dạng khác 22. 8. Phương pháp hệ số bất định 25. 9. Phương pháp tìm nghiệm của đa thức 30. 10. Phương pháp xét giá trị riêng 32.
Chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 12 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định lý Bezout tìm số dư. Dạng 2. Tìm đa thức. Dạng 3. Tổng hợp.