Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Quận 11 - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo Quận 11, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Quận 11 – TP HCM : + Đầu năm 2022, anh Nghĩa mua lại một chiếc máy tính xách tay cũ đã sử dụng qua 2 năm với giá là 21 400 000 đồng. Cuối năm 2023, sau khi sử dụng được thêm 2 năm nữa, anh Nghĩa mang chiếc máy tính đó ra cửa hàng để bán lại. Cửa hàng thông báo mua lại máy với giá chỉ còn 17 000 000 đồng. Anh Nghĩa thắc mắc về sự chênh lệch giữa giá mua và giá bán nên được nhân viên cửa hàng giải thích về mối liên hệ giữa giá trị của một chiếc máy tính xách tay với thời gian nó được sử dụng. Mối liên hệ đó được thể hiện dưới dạng một hàm số bậc nhất: y = ax + b có đồ thị như sau. + Trong đợt khuyến mãi chào năm học mới, nhà sách A thực hiện chương trình giảm giá cho khách hàng như sau: – Khi mua tập loại 96 trang do công ty B sản xuất thì mỗi quyển tập được giảm 10% so với giá niêm yết. – Khi mua bộ I đúng 10 quyển tập loại 96 trang đóng gói sẵn hoặc bộ II đúng 20 quyển tập loại 96 trang đóng gói sẵn do công ty C sản xuất thì mỗi quyển tập bộ I được giảm 10% so với giá niêm yết, còn mỗi quyển tập bộ II được giảm 15% so với giá niêm yết. Khách hàng mua lẻ từng quyển tập loại 96 trang do công ty C sản xuất thì không được giảm giá. Biết giá niêm yết của 1 quyển tập 96 trang do hai công ty B và công ty C sản xuất đều có giá là 8 000 đồng. a) Bạn Hùng vào nhà sách A mua đúng 10 quyển tập loại 96 trang đóng gói sẵn (bộ I) do công ty C sản xuất thì bạn Hùng phải trả số tiền là bao nhiêu? b) Mẹ bạn Lan vào nhà sách A mua 25 quyển tập loại 96 trang thì nên mua tập do công ty nào sản xuất để số tiền phải trả là ít hơn? (mua tất cả tập của cùng một công ty). + Nón lá bài thơ là một đặc trưng của xứ Huế. Một chiếc nón lá hoàn thiện cần qua nhiều công đoạn từ lên rừng hái lá, rồi sấy lá, mở, ủi, chọn lá, xây độn vành, chằm, cắt lá, nức vành, cắt chỉ. Nhằm làm đẹp và tôn vinh thêm cho chiếc nón lá xứ Huế, các nghệ nhân còn ép tranh và vài dòng thơ vào giữa hai lớp lá: “Ai ra xứ Huế mộng mơ Mua về chiếc nón bài thơ làm quà”. Khung của nón lá có dạng hình nón được làm bởi các thanh gỗ nối từ đỉnh tới đáy như các đường sinh 16 vành nón được làm từ những thanh tre mảnh nhỏ, dẻo dai uốn thành những vòng tròn có đường kính to, nhỏ khác nhau, cái nhỏ nhất to bằng đồng xu. – Đường kính (d = 2r) của chiếc nón lá khoảng 40 (cm); – Chiều cao (h) của chiếc nón lá khoảng 19 (cm) a) Tính độ dài của thanh tre uốn thành vòng tròn lớn nhất của vảnh chiếc nón lá.(không kể phần chắp nối, tính gần đúng đến 2 chữ số thập phân, biết π = 3,14) b) Tính diện tích phần lá phủ xung quanh của chiếc nón lá. (không kể phần chắp nối, tính gần đúng đến 2 chữ số thập phân). Biết diện tích xung quanh của hình nón là: S = π r l.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường THPT chuyên Thái Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường THPT chuyên Thái Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường THPT chuyên Thái Bình Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường THPT chuyên Thái Bình Chào các thầy cô và các em học sinh! Sytu xin giới thiệu đến bạn đề tuyển sinh lớp 10 môn Toán (chuyên Toán - Tin) năm học 2021-2022 của trường THPT chuyên Thái Bình, tỉnh Thái Bình. Đề thi bao gồm đáp án và lời giải chi tiết, giúp các em tự tin chuẩn bị cho kỳ thi sắp tới. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 trường THPT chuyên Thái Bình: 1. Cho tam giác ABC nhọn AB AC nội tiếp trong đường tròn O có các đường cao BE CF cắt nhau tại H. Gọi S là giao điểm của các đường thẳng BC và EF, gọi M là giao điểm khác A của SA và đường tròn (O). a. Chứng minh rằng tứ giác AEHF nội tiếp và HM vuông góc với SA. b. Gọi I là trung điểm của BC. Chứng minh rằng SH vuông góc với AI. c. Gọi T là điểm nằm trên đoạn thằng HC sao cho AT vuông góc với BT. Chứng minh rằng hai đường tròn ngoại tiếp của các tam giác SMT và CET tiếp xúc với nhau. 2. Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1) không chia hết cho 7. Chứng minh rằng 3n^2 + 4n + 5 ≠ x^2 với mọi số tự nhiên x. 3. Cho a, b, c là các số thực dương thỏa mãn a^2 + b^2 + c^2 - abc = 3. Tìm giá trị lớn nhất của biểu thức (a + b + c)^2. File WORD (dành cho quý thầy, cô): [đính kèm file Word].
Đề tuyển sinh môn Toán (hệ chuyên) năm 2021 2022 sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh môn Toán (hệ chuyên) năm 2021 2022 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (hệ chuyên) năm 2021 - 2022 sở GD&ĐT Quảng Ngãi Đề tuyển sinh môn Toán (hệ chuyên) năm 2021 - 2022 sở GD&ĐT Quảng Ngãi Chào đón quý thầy cô và các em học sinh thân yêu! Sytu xin giới thiệu đến bạn đọc đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm học 2021 - 2022 của sở GD&ĐT Quảng Ngãi. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm chi tiết, sẽ diễn ra vào ngày 04 tháng 06 năm 2021. Một trong những câu hỏi trong đề thi là như sau: Đề bài: Cho đường tròn tâm O, bán kính R = 4cm và hai điểm B, C cố định trên (O), sao cho BC không là đường kính. Điểm A thay đổi trên (O) sao cho tam giác ABC nhọn. Gọi D, E, F lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC. Hãy chứng minh rằng ... Hãy tham gia kỳ thi để đảm bảo được học tập tại trường chuyên cấp 3 uy tín. Đừng bỏ lỡ cơ hội và hãy chuẩn bị kỹ càng cho bài thi của mình. Chúng tôi tin rằng bạn sẽ làm tốt và đạt được kết quả cao tại kỳ thi sắp tới. Chúc các bạn may mắn và thành công!
Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Quảng Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD ĐT Quảng NamĐề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam: Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD ĐT Quảng Nam Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam. Đề thi này bao gồm đáp án và lời giải chi tiết, kỳ thi sẽ diễn ra vào ngày 03 - 05 tháng 06 năm 2021. Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam: Cho parabol (P): y^2 = 2x và đường thẳng (d): y = mx + m^2 (m là tham số). Chứng minh rằng (d) luôn cắt (P) tại hai điểm A, B sao cho điểm M là trung điểm của đoạn thẳng AB, hai điểm H, K lần lượt là hình chiếu vuông góc của A, B trên trục hoành. Hãy tính độ dài đoạn thẳng KH. Cho hình vuông ABCD có tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH. a) Chứng minh rằng HD là tia phân giác của góc AHC. b) Chứng minh rằng diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD. Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE và CF, đường thẳng AH cắt BC tại D. a) Chứng minh rằng tứ giác ODFE nội tiếp đường tròn. b) Gọi K là giao điểm của AH và EF, I là trung điểm của AH. Đường thẳng CI cắt đường tròn (O) tại M (M khác C). Chứng minh rằng CI vuông góc với KM.
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Quảng Bình Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Quảng Bình Xin chào các thầy cô và các em học sinh! Hôm nay Sytu xin giới thiệu đến quý vị đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 của sở GD&ĐT Quảng Bình. Đề thi bao gồm đầy đủ đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm do sở GD&ĐT Quảng Bình công bố. Kỳ thi sẽ diễn ra vào ngày 08 tháng 06 năm 2021. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh: Tìm tất cả các số nguyên dương n sao cho hai số $2^{n^2 + 7}$ và $2^{n^2 + 12}$ đều là lập phương của hai số nguyên dương nào đó. Cho tam giác nhọn ABC nội tiếp đường tròn O đường kính AE. Gọi D là một điểm bất kì trên cung BE không chứa điểm A (D khác B và E). Gọi H, I, K lần lượt là hình chiếu vuông góc của D lên các đường thẳng BC, CA và AB. a) Chứng minh ba điểm H, I, K thẳng hàng. b) Chứng minh AC, AB, BC, DI, DK, DH. c) Gọi P là trực tâm của ABC, chứng minh đường thẳng HK đi qua trung điểm của đoạn thẳng DP. Trong mặt phẳng tọa độ Oxy, cho parabol $y = x^2$ và đường thẳng d: $y = mx + m^2 - 1$ (với m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ $x = \frac{1}{2}$ thỏa điều kiện $2x^2 + x - 3$. File WORD có sẵn để quý thầy cô tải về và sử dụng. Chúc quý vị và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!