Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 7 môn Toán năm 2019 2020 trường THCS Hồ Văn Long TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 7 môn Toán năm 2019 2020 trường THCS Hồ Văn Long TP HCM Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 7 môn Toán năm 2019 2020 trường THCS Hồ Văn Long TP HCM Đề thi học kì 2 (HK2) lớp 7 môn Toán năm 2019 2020 trường THCS Hồ Văn Long TP HCM Chia sẻ đến quý thầy, cô giáo cùng các em học sinh file PDF đề thi HK2 Toán lớp 7 năm học 2019 – 2020 trường THCS Hồ Văn Long, quận Bình Tân, thành phố Hồ Chí Minh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK2 Toán lớp 7 năm 2019 – 2020 trường THCS Hồ Văn Long – TP HCM: - Một cái cây bị gió bão quật gãy như hình vẽ. Biết chiều cao từ gốc cây đến chỗ bị gãy là 3 mét, khoảng cách từ gốc đến phần ngọn đổ xuống đất là 4 mét. Hãy tính chiều dài phần cây bị gãy (MN). - Trong đợt nghỉ tránh dịch Covid vừa qua, hai bạn Nam và Mai đã thi nhau giải các bài tập toán được thầy cô giao trong các buổi học trực tuyến và tham khảo thêm trên mạng Internet. Kết quả là cả hai bạn giải được tổng cộng 72 bài toán. Biết số bài toán giải được của Nam và Mai tỉ lệ với 4; 5. Em hãy tính xem mỗi bạn giải được bao nhiêu bài toán? - Điểm trung bình cuối năm môn toán của bạn Thục Vy là nghiệm của đa thức. Em hãy tính xem điểm trung bình môn toán cuối năm của bạn Thục Vy là bao nhiêu?

Nguồn: sytu.vn

Đọc Sách

Đề học kì 2 Toán 7 năm 2022 - 2023 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cuối học kì 2 môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi cấu trúc 40% trắc nghiệm + 60% tự luận, thời gian làm bài 90 phút; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 7 năm 2022 – 2023 phòng GD&ĐT Thái Hòa – Nghệ An : + An lấy ngẫu nhiên 3 viên bi trong một túi đựng 3 bi xanh và 2 bi đỏ. Đâu là biến cố chắc chắn? A.An lấy được toàn bi xanh. B.An lấy được bi xanh hoặc bi đỏ. C. An lấy được toàn bi đỏ. D.An lấy được bi có hai màu khác nhau. + Gieo một con xúc sắc cân đối một lần. Trong các biến cố sau, biến cố nào là chắc chắn? A. Gieo được mặt có số chấm bằng 3 B. Gieo được mặt có ít nhất 1 chấm C. Gieo được mặt có số chấm bằng 7 D. Gieo được mặt có số chấm bằng 2. + Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh BC lấy điểm H sao cho HB = BA, từ H kẻ HE vuông góc với BC tại H (E thuộc AC) a) Chứng minh: ABE HBE. b) Chứng minh: Tam giác AEH cân tại E. c) Chứng minh: BE là đường trung trực của AH. d) Gọi K là giao điểm của HE và BA. Chứng minh: BE vuông góc KC.
Đề học kì 2 Toán 7 năm 2022 - 2023 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cuối học kì 2 môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 7 năm 2022 – 2023 phòng GD&ĐT Vũ Thư – Thái Bình : + Gieo một con xúc xắc được chế tạo cân đối. Tìm xác suất của biến cố “Mặt xuất hiện của con xúc xắc có số chấm là số lẻ”. + Thu gọn và sắp xếp các hạng tử của đa thức 5 4 35 3 P x 2x 4x x 3x 2x 5 theo lũy thừa giảm dần của biến. + Cho ∆ABC vuông tại A có AB AC. Kẻ đường phân giác BD của ABC (D AC). Kẻ DH vuông góc với BC tại H. a) Chứng minh ΔDAB = ΔDHB. b) Chứng minh AD < DC. c) Gọi K là giao điểm của đường thẳng DH và đường thẳng AB, đường thẳng BD cắt KC tại E. Chứng minh BE KC và ΔKDC cân tại D.
Đề học kì 2 Toán 7 Cánh Diều năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng cuối học kì 2 môn Toán 7 Cánh Diều (CD) năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình; đề thi hình thức 20% trắc nghiệm kết hợp 80% tự luận, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 7 Cánh Diều năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm: Trong cuộc thi chạy cự li 100m của học sinh nam, có bốn học sinh Bình, Hùng, Hòa, Dũng tham gia với kết quả được thống kê như sau: Học sinh Bình Hùng Hòa Dũng. Thời gian (giây) 15 14,5 14 15,2. Bạn nào chạy nhanh nhất? A. Bình B. Hòa C. Hùng D. Dũng. + Một chiếc hộp có 20 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3,…, 19, 20. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. a) Viết tập hợp C gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra. b) Xét biến cố “Số xuất hiện trên thẻ được rút ra là số chia cho 2 và 3 đều có số dư là 1”. Tính xác suất của biến cố đó. + Cho tam giác ABC vuông tại A (AB < AC), tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc với BC tại E. a) Chứng minh ∆ABD = ∆EBD. b) Gọi M là giao điểm của AB và DE. Chứng minh DM = DC và chứng minh BD là đường trung trực của MC.
Đề học kì 2 Toán 7 KNTTvCS năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng cuối học kì 2 môn Toán 7 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS) năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình; đề thi hình thức 20% trắc nghiệm kết hợp 80% tự luận, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 7 KNTTvCS năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Một bể cá cảnh có dạng hình hộp chữ nhật với các kích thước của đáy dưới là 4cm, 5cm và chiều cao là 12cm. Thể tích của bể cá đó là? + Cho tam giác ABC vuông tại A (AB < AC), tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc với BC tại E. a) Chứng minh ∆ABD = ∆EBD. b) Gọi M là giao điểm của AB và DE. Chứng minh DM = DC và BD là đường trung trực của MC. + Cho tam giác GHK có GH > GK, tia phân giác của góc G cắt cạnh HK tại M. Gọi N là điểm nằm giữa G và M. Chứng minh GH – GK > NH – NK.