Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Bình Dương

Nội dung Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2022-2023 sở GD ĐT Bình Dương Đề tuyển sinh vào môn Toán năm 2022-2023 sở GD ĐT Bình Dương Chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Bình Dương. Kỳ thi diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022-2023 sở GD&ĐT Bình Dương: 1. Cho phương trình \(x^2 - (m + 3)x + 2m + 2 = 0\) với m là tham số. Tìm giá trị của tham số m để: a) Phương trình có nghiệm x = 3. b) Phương trình có hai nghiệm phân biệt x1 và x2 sao cho \(x_1^2 + x_2^2 = 13\). 2. Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Tính chiều dài và chiều rộng của mảnh vườn đó, biết tổng số tiền bán hoa cuối vụ từ mảnh vườn người đó thu được là 252 triệu đồng. 3. Cho tam giác ABC có ba góc đều nhọn. Các đường cao AK, BE và CF cắt nhau tại H. Gọi I là trung điểm của đoạn AH, N là trung điểm của đoạn BC. Hãy: a) Chứng minh bốn điểm A, E, H, F nằm trên cùng một đường tròn. b) Chứng minh NE là tiếp tuyến của đường tròn đường kính AH. c) Chứng minh \(CI^2 - IE^2 = CK \times CB\).

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Lâm Đồng
Thứ Ba ngày 14 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng gồm có 01 trang với 12 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng : + Cho đường tròn (O;R) cố định đi qua hai điểm B và C cố định (BC khác đường kính). Điểm M di chuyển trên đường tròn (O) (M không trùng với B và C), G là trọng tâm của ∆MBC. Chứng minh rằng điểm G chuyển động trên một đường tròn cố định. [ads] + Một bể nước dạng hình trụ có chiều cao là 25dm, bán kính đường tròn đáy là 8dm. Hỏi khi đầy thì bể chứa bao nhiêu lít nước? (bỏ qua độ dày của thành bể; π ≈ 3,14). + Một vườn hoa hình chữ nhật có diện tích 91m2 và chiều dài lớn hơn chiều rộng 6m. Tính chu vi của vườn hoa.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Tiền Giang
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Tiền Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Tiền Giang : + Một người đi xe máy từ địa điểm A đến địa điểm B hết 1 giờ 30 phút, rồi tiếp tục đi từ địa điểm B đến địa điểm C hết 2 giờ. Tìm vận tốc của người đi xe máy trên mỗi quãng đường AB và BC, biết quãng đường xe máy đã đi từ A đến C dài 150 km và vận tốc xe máy đi trên quãng đường AB nhỏ hơn vận tốc đi trên quãng đường BC là 5 km/h. + Cho tam giác ABC vuông tại A, biết AB = 6 cm và BC = 10 cm. Tính giá trị của biểu thức P = 5sinB + 3. [ads] + Cho hai đường tròn (O;R) và (O’;r) tiếp xúc ngoài tại A, với R > r. Kẻ BC là tiếp tuyến chung ngoài của hai đường tròn với B thuộc (O), C thuộc (O’), tiếp tuyến chung trong tại A của hai đường tròn cắt BC tại M. a) Chứng minh bốn điểm O, B, M, A cùng thuộc một đường tròn. b) Gọi E là giao điểm của OM và AB, F là giao điểm của O’M và AC. Chứng minh tứ giác AEMF là hình chữ nhật. c) Chứng minh rằng tam giác MEF đồng dạng với tam giác MO’O. d) Cho biết R = 16 cm và r = 9 cm. Tính diện tích tứ giác OBCO’.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nam
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O;R). Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC tại D và cắt đường tròn (O;R) tại điểm thứ hai là M. 1) Chứng minh tứ giác AEHF nội tiếp. 2) Chứng minh BC là tia phân giác của EBM. 3) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE. 4) Khi hai điểm B, C cố định và điểm A di động trên đường tròn (O;R) nhưng vẫn thỏa mãn điều kiện tam giác ABC có ba góc nhọn. Chứng minh OA vuông góc EF. Xác định vị trí của điểm A để tổng DE + EF + FD đạt giá trị lớn nhất. [ads] + Cho biểu thức B. Rút gọn biểu thức B. Tìm tất cả các giá trị của x để biểu thức B nhận giá trị âm. + Cho ba số dương a, b, c thỏa mãn abc = 1. Chứng minh rằng.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thái Bình
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thái Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thái Bình : Qua điểm M nằm bên ngoài (O;R) kẻ hai tiếp tuyến MA, MB (A, B là tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). a) Chứng minh tứ giác MAOB nội tiếp và MO ⊥ AB. b) Chứng minh MA.AD = MD.AC. c) Gọi I là trung điểm của dây cung CD và E là giao điểm của hai đường thẳng AB và OI. Tính độ dài đoạn thẳng OE theo R khi OI = R/3. d) Qua tâm O kẻ đường thẳng vuông góc với OM cắt các đường thẳng MA, MB lần lượt tại P và Q. Tìm vị trí của điểm M để diện tích tam giác MPQ đạt giá trị nhỏ nhất.