Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề phép toán cộng, trừ, nhân, chia phân số

Tài liệu gồm 22 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép toán cộng, trừ, nhân, chia phân số, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Phép cộng các phân số. – Muốn cộng hai phân số có cùng mẫu số, ta cộng các tử và giữ nguyên mẫu a b a b m m m. – Muốn cộng hai phân số không cùng mẫu, ta viết các phân số đó dưới dạng hai phân số có cùng một mẫu rồi cộng các tử và giữa nguyên mẫu chung. Dạng 2 . Phép trừ các phân số. Muốn trừ một phân số cho một phân số, ta cộng số bị trừ với số đối của số trừ. Dạng 3 . Phép nhân, chia các phân số. – Rút gọn (nếu có thể) các phân số trong đề bài. – Áp dụng quy tắc nhân, chia phân số. – Áp dụng các tính chất cơ bản của phép nhân phân số. Dạng 4 . Viết một phân số dưới dạng tích, thương của hai phân số. a) Để viết một phân số dưới dạng tích hai phân số, ta làm như sau: + Bước 1. Rút gọn các phân số (nếu có thể). + Bước 2. Viết các số nguyên ở tử và mẫu của phân số sau khi rút gọn dưới dạng tích của hai số nguyên. + Bước 3. Lập các phân số có tử và mẫu chọn trong các số nguyên ở bước trên. b) Viết một phân số dưới dạng thương của hai phân số thỏa mãn điều kiện cho trước. Phương pháp giải: + Viết tử và mẫu của phân số dưới dạng tích của hai số nguyên. + Lập các phân số có tử và mẫu chọn trong các số nguyên đó sao cho chúng thỏa mãn điều kiện cho trước. + Chuyển phép nhân phân số thành phép chia cho số nghịch đảo. Dạng 5 . Bài toán tổng hợp. * Tính giá trị của biểu thức: Để tính giá trị của biểu thức được đúng và hợp lí, cần chú ý: • Thứ tự thực hiện các phép tính: Đối với biểu thức không chứa dấu ngoặc: Lũy thừa → Phép nhân, chia → Phép cộng và phép trừ. Đối với biểu thức có chứa dấu ngoặc: () → [] → {}. • Các tính chất cơ bản của phép nhân phân số. * Tìm x: Ta cần xác định quan hệ giữa các số trong phép nhân, phép chia. • Muốn tìm thừa số chưa biết, ta lấy tích chia cho thừa số đã biết. • Muốn tìm số bị chia, ta lấy thương nhân với số chia. • Muốn tìm số chia, ta lấy số bị chia chia cho số chia.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm đoạn thẳng, độ dài đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề đoạn thẳng, độ dài đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Đoạn thẳng AB là gì? + Đoạn thẳng AB hay đoạn thẳng BA là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. + A, B là hai đầu mút (mút) của đoạn thẳng AB. 2. Độ dài đoạn thẳng. + Mỗi đoạn thẳng có một độ dài. Khi chọn một đơn vị độ dài thì độ dài mỗi đoạn thẳng được biểu diễn bởi một số dương (thường viết kèm đơn vị). + Độ dài đoạn thẳng AB còn gọi là khoảng cách giữa hai điểm A và B. Ta quy ước khoảng cách giữa hai điểm trùng nhau bằng 0 (đơn vị). 3. So sánh độ dài hai đoạn thẳng. + Hai đoạn thẳng AB và EG có cùng độ dài. Ta viết AB EG và nói đoạn thẳng AB bằng đoạn thẳng EG. + Đoạn thẳng AB có độ dài nhỏ hơn đoạn thẳng CD. Ta viết AB CD và nói AB ngắn hơn CD. Hoặc CD AB và nói CD dài hơn AB. 4. Các dạng toán thường gặp. Dạng 1: Nhận biết đoạn thẳng. Phương pháp: Ta sử dụng định nghĩa: Đoạn thẳng AB là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. Dạng 2: Xác định số đoạn thẳng. Phương pháp: Với n điểm phân biệt cho trước n N n 2 thì số đoạn thẳng vẽ được là 1 2 n n. Dạng 3: Tính độ dài đoạn thẳng. So sánh hai đoạn thẳng. Phương pháp: + Tìm độ dài mỗi đoạn thẳng: Ta vận dụng kiến thức “Nếu điểm M nằm giữa hai điểm A và B thì AM MB AB”. + Ta so sánh các đoạn thẳng: Hai đoạn thẳng bằng nhau nếu có cùng độ dài. Đoạn thẳng lớn hơn nếu có độ dài lớn hơn. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm điểm nằm giữa hai điểm, tia
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề điểm nằm giữa hai điểm, tia, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Điểm nằm giữa hai điểm. Trong 3 điểm thẳng hàng, có một và chỉ một điểm nằm giữa hai điểm còn lại. Trong hình bên, ta nói: + Điểm C nằm giữa hai điểm A và B. + Hai điểm A và B nằm khác phía so với C. + Hai điểm A và C nằm cùng phía so với B; C và B nằm cùng phía so với A. 2. Tia. + Tia Am (tia AB) gồm điểm A, điểm B và tất cả các điểm nằm cùng phía với B đối với A. Khi đó, điểm A gọi là điểm gốc của tia Am (tia AB). + Trên đường thẳng xy lấy điểm O bất kì. Điểm O chia đường thẳng xy thành 2 phần. Hình gồm điểm O và mỗi phần đường thẳng đó gọi là 1 tia (gốc O) hay còn gọi là nửa đường thẳng gốc O. Khi đó, hai tia Ox, Oy gọi là hai tia đối nhau. 3. Các dạng toán thường gặp. Dạng 1: Nhận biết và chỉ ra điểm nằm giữa hai điểm; hai điểm nằm cùng/khác phía so với điểm khác trong 3 điểm thẳng hàng. Phương pháp: Dựa vào nhận xét “Trong 3 điểm thẳng hàng, có một và chỉ một điểm nằm giữa hai điểm còn lại”. Lưu ý: Ta chỉ xét vị trí “nằm giữa / cùng phía / khác phía” khi cho các điểm thẳng hàng. Dạng 2: Nêu khái niệm về tia. Vẽ được tia, tia đối của một tia. Phương pháp: Dựa vào định nghĩa về tia; xác định rõ điểm gốc của tia. Lưu ý: Hai tia đối nhau tạo thành 1 đường thẳng. Mỗi điểm bất kì trên đường thẳng là gốc chung của hai tia đối nhau. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm điểm và đường thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề điểm và đường thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Điểm thuộc đường thẳng. M là một điểm của đường thẳng d hay M thuộc đường thẳng d (hoặc: M nằm trên d, d đi qua M, d chứa M). Kí hiệu M d. N không là điểm của đường thẳng d hay N không thuộc đường thẳng d. Kí hiệu N d. 2. Ba điểm thẳng hàng. Với A và B là hai điểm phân biệt. Có một đường thẳng và chỉ một đường thẳng đi qua A và B. Kí hiệu là đường thẳng AB hay đường thẳng BA. Cho C là điểm khác A và B. Nếu C AB thì ba điểm A B C thẳng hàng. Ngược lại, nếu C AB thì ba điểm A B C không thẳng hàng. 3. Vị trí tương đối của hai đường thẳng. Với 1 d và 2 d là hai đường thẳng tùy ý. 1 d và 2 d song song với nhau, kí hiệu 1 2 d d nếu chúng không có điểm chung. 1 d và 2 d cắt nhau nếu chúng có một điểm chung. Điểm chung đó được gọi là giao điểm của 1 d và 2 d. Nếu 1 d và 2 d có từ hai điểm chung trở lên thì 1 d và 2 d là hai đường thẳng trùng nhau (mỗi điểm thuộc một trong hai đường thẳng đều là điểm chung của hai đường thẳng). 4. Các dạng toán thường gặp. Dạng 1 : Quan hệ giữa điểm và đường thẳng. Dạng 2 : Vị trí tương đối giữa hai đường thẳng. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm tỉ số và tỉ số phần trăm
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề một số bài toán về tỉ số và tỉ số phần trăm, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Tỉ số của hai số: Thương trong phép chia số a cho số b b 0 gọi là tỉ số của a và b. Tỉ số của a và b kí hiệu là a : b (cũng kí hiệu là a / b). Chú ý: + Phân số a b thì cả a và b phải là các số nguyên (b khác 0). + Tỉ số a b thì cả a và b có thể là các số nguyên, phân số, hỗn số, số thập phân. + Ta thường dùng khái niệm tỉ số khi nói về thương của hai đại lượng cùng loại và cùng đơn vị đo. 2. Tỉ số phần trăm: Ta thường dùng tỉ số dưới dạng tỉ số phần trăm, tức là tỉ số có dạng 100 a kí hiệu a%. Muốn tìm tỉ số phần trăm của hai số a và b, ta nhân a với 100 rồi chia cho b và viết kí hiệu % vào bên phải kết quả tìm được: 100 a b. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.