Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang

Nội dung Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Xin chào quý thầy cô và các em học sinh lớp 7! Dưới đây là đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán lớp 7 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Hãy cùng xem qua một số câu hỏi trong đề thi nhé: Cho một nhóm Địa y phát triển trên một khoảng đất hình tròn và có mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y theo công thức: d = 7t − 12 (với t ≥ 12). Biết vào năm 2022, đường kính của một nhóm Địa y là 42mm, hãy tính xem băng trên dòng sông đó đã tan vào năm nào? Trong tam giác vuông cân MNP ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. Hãy chứng minh rằng HMN = KPM và MAP là tam giác cân với AH vuông góc AK. Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bể là 34 cm. Hãy tính thể tích của tiểu cảnh đó. Hy vọng rằng các em sẽ làm tốt các câu hỏi trong đề thi này. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề khảo sát chọn HSG Toán 7 năm 2018 - 2019 phòng GDĐT Xuân Trường - Nam Định
Đề khảo sát chọn HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 7 đang học tập tại các trường THCS trên địa bàn huyện Xuân Trường, tỉnh Nam Định để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán 7 để tham dự kỳ thi học sinh Toán 7 cấp tỉnh, đề thi có lời giải chi tiết.
Đề giao lưu học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. + Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và AMC = 135 độ. Tính MC. + Từ 200 số tự nhiên 1; 2; 3;…; 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.