Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 12 năm học 2018 - 2019 sở GDĐT Đồng Tháp

Sáng thứ Ba ngày 02 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Đồng Tháp đã tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán 12 năm học 2018 – 2019, nhằm tổng kết lại toàn bộ các kiến thức Toán 12 học sinh đã học trong giai đoạn HK2 vừa qua của năm học 2018 – 2019, để làm cơ sở cho việc đánh giá xếp loại học lực môn Toán 12. Đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đồng Tháp có mã đề 169 gồm 06 trang, đề được biên soạn theo dạng trắc nghiệm hoàn toàn với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, các kiến thức học sinh cần ôn tập để hoàn thành tốt đề thi này bao gồm: nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), số phức (Giải tích 12 chương 4), phương pháp tọa độ trong không gian (Hình học 12 chương 3), đề thi có đáp án mã đề 126, 145, 169, 197. [ads] Trích dẫn đề thi học kỳ 2 Toán 12 năm học 2018 – 2019 sở GD&ĐT Đồng Tháp : + Gọi M là điểm biểu diễn cho số phức z1 = a + (a^2 – 2a + 2)i (với a là số thực thay đổi) và N là điểm biểu diễn cho số phức z2 biết |z2 – 2 – i| = lz2 – 6 + i|. Tìm độ dài ngắn nhất của đoạn MN. + Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x + y – 2z + 4 = 0 và đường thẳng d: x = 3 + t, y = 1 + t, z = -1 + t (t thuộc R). Tìm khẳng định đúng. A. d và (P) cắt nhau nhưng không vuông góc với nhau. B. d nằm trong (P). C. d và (P) song song nhau. D. d và (P) vuông góc với nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;-2;3), B(3;2;-1), C(0;2;1) và mặt phẳng (P): x + y – 2z – 6 = 0. Gọi M(a;b;c) là điểm thuộc (P) sao cho biểu thức vectơ |MA + MB + 2MC| đạt giá trị nhỏ nhất. Tính S = a + b + c.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn Quảng Ngãi
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi HK2 Toán lớp 12 năm học 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi; đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 356, 525. Trích dẫn đề thi HK2 Toán lớp 12 năm 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi : + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 = 1 và điểm A(0;0;2). Đường thẳng d thay đổi qua A luôn cắt mặt cầu (S) tại hai điểm B và C sao cho B là trung điểm của AC, biết rằng tập hợp điểm B luôn nằm trên một đường tròn cố định. Tính bán kính đường tròn đó. [ads] + Cho số phức z = 2 + i. Trong mặt phẳng Oxy, gọi A và B lần lượt là điểm biểu diễn của số phức z và z¯. Tính diện tính tam giác OAB (với O là gốc tọa độ). + Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn số phức z thỏa |2z/(1 – i) + 2 + 4i| = |z(1 – i) + 6 + 4i| là đường thẳng có phương trình ax + by – 4 = 0. Tính a^2 + b^2. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường Phổ thông Năng khiếu TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường Phổ thông Năng khiếu TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh tổ chức kỳ thi học kỳ 2 môn Toán học lớp 12 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM mã đề 628 gồm 30 câu trắc nghiệm (06 điểm) và 04 câu tự luận (04 điểm), thời gian làm bài 90 phút, không kể thời gian phát đề. Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM : + Gọi (D) là miền phẳng giới hạn bởi (C) : y = 2√log2(x), trục Ox và đường thẳng x = 5. Tính thể tích V của vật thể tròn xoay sinh bởi (D) khi (D) quay quanh trục Ox. + Trong mặt phẳng phức Oxy, xem tập hợp E các số phức z thỏa |z − 5i| ≤ 3. Nếu trong tập E, số phức z0 có môđun nhỏ nhất thì phần ảo của z0 bằng bao nhiêu? [ads] + Trong mặt phẳng phức Oxy, tập hợp các điểm biểu diễn số phức z sao cho z2 là số thuần ảo là hai đường thẳng d1, d2. Góc α giữa hai đường thẳng d1, d2 là bao nhiêu?
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trần Khai Nguyên TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trần Khai Nguyên TP HCM Bản PDF Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Trần Khai Nguyên, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trần Khai Nguyên – TP HCM : + Gọi M và N lần lượt là các điểm biểu diễn của z1, z2 trên mặt phẳng tọa độ, I là trung điểm MN, O là gốc tọa độ (ba điểm O, M, N phân biệt và không thẳng hàng). Mệnh đề nào sau đây là đúng? + Trong không gian với hệ tọa độ Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = a và x = b (a < b). Gọi S(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a =< x =< b. Giả sử hàm số y = S(x) liên tục trên đoạn [a;b]. Khi đó, thể tích V của vật thể (H) được cho bởi công thức? + Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) nằm trên mặt cầu (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2019 2020 trường THPT Tân Phú Đồng Nai
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2019 2020 trường THPT Tân Phú Đồng Nai Bản PDF Ngày … tháng 06 năm 2020, trường THPT Tân Phú, huyện Định Quán, tỉnh Đồng Nai tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán lớp 12 năm học 2019 – 2020 trường THPT Tân Phú – Đồng Nai gồm có 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK2 Toán lớp 12 năm học 2019 – 2020 trường THPT Tân Phú – Đồng Nai : + Cho hình vuông ABCD cạnh a. Trên hai tia Bx, Dy vuông góc với mặt phẳng (ABCD) và cùng chiều lần lượt lấy hai điểm M và N sao cho BM = a/4; DN = 2a. Tính góc x giữa hai mặt phẳng (AMN) và (CMN). [ads] + Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + y – 2z + m = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y – 6z – 2 = 0. Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4√3. + Trong mặt phẳng tọa độ Oxy. Gọi A, B, C lần lượt là các điểm biểu diễn số phức -1 – 2i, 4 – 4i, -3i. Số phức biểu diễn trọng tâm tam giác ABC là?