Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam Bản PDF Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam

Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 từ sở GD&ĐT Hà Nam. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố.

Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam:
- Cho đường tròn O đường kính AB R=2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC.
1. Chứng minh OM // BN và MC = NO.
2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC.
3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO.
- Giải phương trình 3xy+2xz=3 2021 với x, y và z là các số nguyên.
- Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt A1, A2, A3,... sao cho 2025 điểm A1A2A3... không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.

File WORD (dành cho quý thầy, cô): Download here

Hy vọng đề tuyển sinh này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi và đạt kết quả cao. Chúc quý thầy, cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GDĐT Giao Thuỷ - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm 2023 lần 3 phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ – Nam Định : + Cho phương trình 2 2 3 0 x mx (1) (với mlà tham số). a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị m. b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn 1 2 x x 3. + Cho đường tròn O 3cm. Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm) sao cho 0 AOB 120. Tính diện tích phần giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB. + Cho đường tròn (O) có dây AB không là đường kính, tiếp tuyến tại A và B cắt nhau tại M. Vẽ cát tuyến MCD nằm giữa hai tia MA và MO (MC MD). Đoạn thẳng MO cắt AB tại H và cắt (O) tại điểm I. Chứng minh: a) 2 MA MC MD và 2 MC MD OH OM MO. b) Tứ giác OHCD nội tiếp và CI là tia phân giác của HCM.
Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 - 2024
Tài liệu gồm 82 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, tuyển tập 15 đề ôn thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024; các đề thi hình thức 100% tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. Trích dẫn Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 : + Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bả đen, nóc nhà Đông Nam Bộ bằng cáp treo khứ hồi (gồm lượt lên và lượt xuống). Nhưng khi tới nơi có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên còn lúc xuống sẽ đi cáp treo trải nghiệm nên 5 bạn mua vé lượt xuống, do đó đoàn đã chi ra 9450000 đồng để mua vé. Hỏi giá cáp treo khứ hồi và giá vé 1 lượt là bao nhiêu? Biết rằng giá vé 1 lượt rẻ hơn vé khứ hồi là 110000 đồng. + Cho Cho tam giác ABC vuông tại A ngoại tiếp đường tròn O. Gọi D E F lần lượt là các tiếp điểm của O với các cạnh AB AC và BC. Đường thẳng BO cắt đường thẳng EF tại I. Tính BIF. + Cho hình chữ nhật ABCD. Gọi M N lần lượt là trung điểm cảu các cạnh BC và CD. Gọi E là giao điểm của BN với AM và F là giao điểm của BN với DM; DM cắt AN tại K. Chứng minh điểm A nằm trên đường tròn ngoại tiếp tam giác EFK.
Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; kỳ thi được diễn ra vào thứ Ba ngày 09 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y ax b (a b là tham số) tìm a b để d có hệ số góc bằng 3 và cắt đường thẳng ∆ y x 2 3 tại điểm có tung độ bằng 5. + Tìm tất các giá trị của tham số m để phương trình 2 2 x xm m 2 2 10 có hai nghiệm phân biệt 1 x 2 x thỏa mãn điều kiện 2 2 1 2 12 2x x 8 0. + Cho tam giác ABC có góc BAC nhọn đường cao AH H BC nội tiếp trong đường tròn O bán kính R gọi I và K lần lượt là hình chiếu của A lên các tiếp tuyến của O tại B và C 1. Chứng minh tứ giác AIBH và tứ giác AHCK nội tiếp 2. Cho 0 BAC 35. Tính góc IAK. 3. Lấy điểm M trên tia OB sao cho OM R 2. Tìm vị trí điểm N trên O sao cho 2NI NM đạt giá trị nhỏ nhất.
Đề khảo sát Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Trong hệ trục toạ độ Oxy, cho hai đường thẳng 2 1 (d) y (m 1) x 2m (m là tham số) và 2 (d) y 3x 4. Tìm các giá trị của tham số m để các đường thẳng 1 (d) và 2 (d) song song với nhau. + Cho phương trình: 2 2 x 2 m 2 x m 4m 0 1 (với x là ẩn số). 1) Giải phương trình (1) khi m 1. 2) Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn điều kiện: 2 1 1 2 3 3 x x. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tứ giác AFHE nội tiếp. 2) Tia AD cắt đường tròn (O) ở K (K ≠ A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. AM cắt đường tròn (O) tại I (I ≠ A). Chứng minh: MC2 = MI.MA và tam giác CMD cân. 3) MD cắt BI tại N. Chứng minh ba điểm C, N, K thẳng hàng.