Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam Bản PDF Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam

Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 từ sở GD&ĐT Hà Nam. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố.

Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam:
- Cho đường tròn O đường kính AB R=2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC.
1. Chứng minh OM // BN và MC = NO.
2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC.
3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO.
- Giải phương trình 3xy+2xz=3 2021 với x, y và z là các số nguyên.
- Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt A1, A2, A3,... sao cho 2025 điểm A1A2A3... không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.

File WORD (dành cho quý thầy, cô): Download here

Hy vọng đề tuyển sinh này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi và đạt kết quả cao. Chúc quý thầy, cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán sở GD và ĐT Tây Ninh
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán sở GD và ĐT Tây Ninh (Đề chung dành cho tất cả thí sinh) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A, có sinACB = 3/5. Tính tanABC. + Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn (O). Gọi D là điểm chính giữa cung lớn BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ D đến đường phân giác trong góc B và đường phân giác trong góc C của tam giác ABC. Chứng minh trung điểm H của EF cách đều hai điểm B và C.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Lam Sơn - Thanh Hóa
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Lam Sơn – Thanh Hóa (Đề chung dành cho tất cả thí sinh) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) với tâm O có bán kính R đường kính AB cố định, M là một điểm di động trên (O) .sao cho M không trùng với các điểm A và B. Lấy C là điểm đối xứng với O qua A. Đường thẳng vuông góc với AB tại C cắt đường thẳng AM tại N đường thẳng BN cắt đường tròn (O) tại điểm thứ hai E. Các đường thẳng BM và CN cắt nhau tại F [ads] a) Chứng minh ba điểm A; E; F thẳng hàng và tứ giác MENF nội tiếp b) Chứng minh: AM.AN = 2R^2 c) Xác định vị trí của điểm M trên đường tròn (O) để tam giác BNF có diện tích nhỏ nhất
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Võ Thị Sáu - Hải Phòng lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Võ Thị Sáu – Hải Phòng lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một hãng taxi giá rẻ định giá tiền theo hai gói cước trong bảng giá như sau: Gói 1: Giá mở cửa là 6000 đồng/1km cho 10km đầu tiên và 2500 đồng với mỗi km tiếp theo Gói 2: 4000 đồng cho mỗi km trên cả quãng đường a) Nếu cô Tâm cần đi một quãng đường là 35 km thì chọn gói cước nào có lợi hơn? b) Nếu cô Tâm cần đi một quãng đường là x km mà chọn gói cước 1 có lợi hơn thì x phải thỏa mãn điều kiện gì? [ads] + Cho đường tròn (O; R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C sao cho đoạn thẳng AC cắt (O) tại K khác A. Hai dây MN và BK cắt nhau ở E a/ Chứng minh tứ giác AHEK nội tiếp b/ Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh tam giác NFK cân và EM.NC = EN.CM c/ Giả sử KE = KC. Chứng minh OK//MN và KM^2 + KN^2 = 4R^2 + Một hình trụ có thể tích bằng 35pi dm3. Hãy so sánh thể tích hình trụ này với thể tích hình cầu đường kính 6dm
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một nhóm gồm 15 học sinh (cả nam và nữ) tham gia buổi lao động trồng cây. Các bạn nam trồng được 30 cây, các bạn nữ trồng được 36 cây. Mỗi bạn nam trồng được số cây như nhau và mỗi bạn nữ trồng được số cây như nhau. Tính số học sinh nam và số học sinh nữ của nhóm, biết rằng mỗi bạn nam trồng được nhiều hơn mỗi bạn nữ 1 cây. + Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không trùng với A và B). Từ điểm C kẻ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB (D∈AB, E∈MA, F∈MB). Gọi I là giao điểm của AC và DE, K là giao điểm của BC và DF. Chứng minh rằng: [ads] 1. Tứ giác ADCE nội tiếp một đường tròn 2. Hai tam giác CDE và CFD đồng dạng 3. Tia đối của CD là tia phân giác của góc( ECF) 4. Đường thẳng IK song song với đường thẳng AB