Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt

Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tóm tắt lý thuyết cần nhớ, phân loại và phương pháp giải các dạng toán chuyên đề phương pháp tọa độ trong không gian Oxyz (Toán 12 phần Hình học chương 3). Chương 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Bài 1. TỌA ĐỘ VÉC TƠ – TỌA ĐỘ ĐIỂM 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 3. + Dạng 1. Tọa độ véc tơ 3. + Dạng 2. Tọa độ điểm 6. + Dạng 3. Hình chiếu, đối xứng qua các trục, các mặt toạ độ 11. + Dạng 4. Tính diện tích và thể tích 12. C BÀI TẬP TỰ LUYỆN 14. Bài 2. PHƯƠNG TRÌNH MẶT CẦU 17. A LÝ THUYẾT CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 17. + Dạng 1. Xác định tâm I, bán kính r của mặt cầu cho trước 17. + Dạng 2. Mặt cầu dạng khai triển (S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0 18. + Dạng 3. Lập phương trình mặt cầu 20. + Dạng 4. Vị trí tương đối 24. C BÀI TẬP TỰ LUYỆN 26. Bài 3. PHƯƠNG TRÌNH MẶT PHẲNG 29. A LÝ THUYẾT CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 31. + Dạng 1. Xác định véc tơ pháp tuyến và điểm thuộc mặt phẳng 31. + Dạng 2. Lập phương trình mặt phẳng khi biết các yếu tố liên quan 31. + Dạng 3. Phương trình theo đoạn chắn 35. + Dạng 4. Khoảng cách và góc 36. + Dạng 5. Vị trí tương đối của hai mặt phẳng 38. + Dạng 6. Vị trí tương đối của mặt phẳng với mặt cầu 39. C BÀI TẬP TỰ LUYỆN 43. Bài 4. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 46. A LÝ THUYẾT CẦN NHỚ 46. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 49. + Dạng 1. Xác định điểm thuộc và véc tơ chỉ phương của đường thẳng 49. + Dạng 2. Viết phương trình đường thẳng khi biết vài yếu tố liên quan 50. + Dạng 3. Vị trí tương đối của hai đường thẳng 53. + Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng 55. + Dạng 5. Góc và khoảng cách 56. + Dạng 6. Hình chiếu H của điểm M lên mặt phẳng (P) 58. + Dạng 7. Hình chiếu H của điểm M lên đường thẳng d 59. C BÀI TẬP TỰ LUYỆN 61. Bài 5. MỘT SỐ BÀI TOÁN CỰC TRỊ 66. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 66. + Dạng 1. Tìm max – min bằng cách thiết lập hàm và khảo sát hàm 66. + Dạng 2. Tìm max – min bằng cách sử dụng mối quan hệ giữa đường cao và đường xiên 68. + Dạng 3. Tìm max – min bằng cách quy về tìm hình chiếu của điểm lên mặt 70. + Dạng 4. Tìm max – min bằng cách quy về tìm điều kiện ba điểm thẳng hàng 73. + Dạng 5. Tìm max min liên quan đến phương trình theo đoạn chắn 74. B BÀI TẬP TỰ LUYỆN 76. Bài 6. BỘ ĐỀ ÔN TẬP CUỐI CHƯƠNG 80. A ĐỀ SỐ 1 80. B ĐỀ SỐ 2 83. C ĐỀ SỐ 3 85. D ĐỀ SỐ 4 88. E ĐỀ SỐ 5 91. Bài 7. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 94. A ĐÁP ÁN TRẮC NGHIỆM BÀI 1 94. B ĐÁP ÁN TRẮC NGHIỆM BÀI 2 94. C ĐÁP ÁN TRẮC NGHIỆM BÀI 3 94. D ĐÁP ÁN TRẮC NGHIỆM BÀI 4 94. E ĐÁP ÁN TRẮC NGHIỆM BÀI 5 94. F ĐÁP ÁN TRẮC NGHIỆM CÁC ĐỀ TỔNG ÔN 94.

Nguồn: toanmath.com

Đọc Sách

Bài giảng hệ tọa độ trong không gian - Nguyễn Bảo Vương
Tài liệu gồm 54 trang bao gồm tóm tắt lý thuyết cơ bản, công thức tính tọa độ, phân dạng toán, hướng dẫn giải và bài tập các chủ đề trong bài học hệ tọa độ trong không gian (Bài 1, Hình học 12 chương 3: Phương pháp tọa độ trong không gian), các bài tập trong tài liệu có đáp án và lời giải chi tiết. Tài liệu do thầy Nguyễn Bảo Vương biên soạn và giảng dạy. Các vấn đề hệ tọa độ trong không gian : Vấn đề 1. CÁC ĐỊNH TỌA ĐỘ CỦA ĐIỂM, TỌA ĐỘ VECTƠ Phương pháp : Sử dụng các kết quả trong phần: + Tọa độ của vectơ. + Tọa độ của điểm. + Liên hệ giữa tọa độ vectơ và tọa độ hai điểm mút. Vấn đề 2. PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Với phương trình cho dưới dạng chính tắc (S): (x − a)^2 + (y − b)^2 + (z − c)^2 = k, với k > 0 ta lần lượt có: + Bán kính bằng R = √k. + Tọa độ tâm I là nghiệm của hệ phương trình: x – a = 0, y – b = 0 và z – c = 0. Suy ra I(a; b; c). Với phương trình cho dưới dạng tổng quát ta thực hiện theo các bước: + B­ước 1: Chuyển phương trình ban đầu về dạng:(S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0. (1) + B­ước 2: Để (1) là phương trình mặt cầu điều kiện là: a2 + b2 + c2 − d > 0. + B­ước 3: Khi đó (S) có thuộc tính: Tâm I(a; b; c) và bán kính R = √(a2 + b2 + c2 − d). [ads] Vấn đề 3. VIẾT PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Gọi (S) là mặt cầu thoả mãn điều kiện đầu bài. Chúng ta lựa chọn phương trình dạng tổng quát hoặc dạng chính tắc. Khi đó: 1. Muốn có phương trình dạng chính tắc, ta lập hệ 4 phương trình với bốn ẩn a, b, c, R, điều kiện R > 0. Tuy nhiên, trong trường hợp này chúng ta thường chia nó thành hai phần, bao gồm: + Xác định bán kính R của mặt cầu. + Xác tâm I(a; b; c) của mặt cầu. Từ đó, chúng ta nhận được phương trình chính tắc của mặt cầu. 2. Muốn có phương trình dạng tổng quát, ta lập hệ 4 phương trình với bốn ẩn a, b, c, d, điều kiện a2 + b2 + c2 − d > 0. Chú ý : 1. Cần phải cân nhắc giả thiết của bài toán thật kỹ càng để lựa chọn dạng phương trình thích hợp. 2. Trong nhiều trường hợp đặc thù chúng ta còn sử dụng phương pháp quỹ tích để xác định phương trình mặt cầu.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 122 trang phân dạng và tuyển chọn các bài tập trắc nghiệm có đáp án chuyên đề phương pháp tọa độ trong không gian, tài liệu được biên soạn bởi thầy Nguyễn Vũ Minh. Nội dung tài liệu gồm 4 phần: + Phần 01: HỆ TỌA ĐỘ TRONG KHÔNG GIAN + Phần 02:VEC TƠ CÙNG PHƯƠNG – TÍCH CÓ HƯỚNG + Phần 03: MẶT CẦU + Phần 4: PHƯƠNG TRÌNH MẶT PHẲNG
Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian
Cuốn sách Phương pháp siêu tốc giải trắc nghiệm môn Toán chuyên đề hình học giải tích trong không gian của các tác giả Lương Đức Trọng, Đặng Đình Hanh, Phạm Hoàng Hà gồm 360 trang với các chuyên đề bám sát các bài học trong SGK và một số chuyên đề mở rộng, nâng cao đáp ứng cho các bài tập có tính chất phân loại cao trong đề thi. Cấu trúc của mỗi chuyên đề gồm: tóm tắt nội dung kiến thức cơ bản, các dạng bài tập cơ bản, các ví dụ ở dạng bài tập trắc nghiệm khách quan được phân hóa theo 4 mức độ: nhận biết, thông hiểu, vận dụng và vận dụng cao; trong đó các bài tập cơ bản chiếm khoảng 70% và các bài tập nâng cao chiếm 30%. Ở mỗi ví dụ, ngoài việc trình bày lời giải để học sinh nắm vững kiến thức cơ bản, trong nhiều ví dụ có trình bày những nhận xét đặc thù để giúp học sinh có thể nhanh chóng loại bỏ một hoặc hai đáp án gây nhiễu. Đặc biệt, sau nhiều ví dụ có phần thủ thuật chọn nhanh để giúp học sinh nhanh chóng tìm được đáp án chính xác. Trong chuyên đề cuối cùng, ngoài các bài tập tổng hợp của hình giải tích không gian còn có phần ứng dụng của hình giải tích không gian vào giải một số bài tập hình không gian. Cuối mỗi chuyên đề có bài tập để học sinh tự rèn luyện. Kết thúc mỗi chuyên đề là phần Đáp án – Hướng dẫn giải, phần này bao gồm đáp án của tất cả các câu hỏi, bài tập và hướng dẫn giải những câu hỏi, bài tập điển hình hoặc những bài tập khó để học sinh có thể đối chiếu, qua đó giúp học sinh tích lũy kinh nghiệm, hình thành phương pháp giải các bài tập. [ads] Sách gồm các chủ đề : 1. Tọa độ trong không gian 2. Tích có hướng của hai vectơ và một số ứng dụng 3. Phương trình mặt phẳng 4. Phương trình đường thẳng 5. Vị trí tương đối của đường thẳng, mặt phẳng 6. Bài toán về hình chiếu vuông góc trong không gian 7. Góc và khoảng cách 8. Phương trình mặt cầu 9. Điểm, đường thẳng, mặt phẳng và mặt cầu 10. Ôn tập, các bài toán tổng hợp 11. Một số đề tổng hợp
Chuyên đề mặt cầu trong không gian Oxyz - Phạm Văn Long
Tài liệu gồm 28 trang gồm lý thuyết mặt cầu, hướng dẫn phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề mặt cầu trong không gian Oxyz. 1. Tóm tắt lý thuyết, phương trình  mặt cầu và một số công thức tính cơ bản 2. Ví dụ minh họa về 2 dạng toán + Dạng 1: Viết phương trình mặt cầu Thuật toán 1: Bước 1: Xác định tâm I Bước 2: Xác định bán kính R của (S) Bước 3: Mặt cầu (S) có tâm I và bán kính R Thuật toán 2: Gọi phương trình dạng tổng quát của (S), sử dụng các điều kiện để tìm các tham số [ads] Kỹ năng xác định tâm và bán kính của đường tròn trong không gian Cho mặt cầu (S) tâm I bán kính R. Mặt phẳng (P) cắt (S) theo một đường tròn (C) Bước 1: Lập phương trình đường thẳng d qua I và vuông góc với mặt phẳng (P) Bước 2: Tâm H của đường tròn (C) là giao điểm của d và mặt phẳng (P) Bước 3: Gọi r là bán kính của (C) + Dạng 2: Sự tương giao và sự tiếp xúc Đường thẳng Δ là tiếp tuyến của (S) ⇔ d(I; Δ) = R Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I; (α)) = R 3. Bài tập trắc nghiệm tự luyện được sắp xếp theo mức độ phân loại