Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm số thập phân

Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm số thập phân Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm về chuyên đề số thập phân. Trọn bộ tài liệu đã được chọn lọc và phân loại theo các dạng toán, từ cơ bản đến nâng cao, giúp các em nắm vững kiến thức một cách dễ dàng.

A. TÓM TẮT LÝ THUYẾT
1. Số thập phân:
- Phân số thập phân là phân số có mẫu số là lũy thừa của 10.
- Số thập phân dương được viết dưới dạng số thập phân dương.
- Số thập phân âm được viết dưới dạng số thập phân âm.
- Số thập phân gồm hai phần: phần số nguyên viết bên trái dấu phẩy và phần thập phân viết bên phải dấu phẩy.

2. Số đối của một số thập phân:
Hai số thập phân gọi là đối nhau khi chúng biểu diễn hai phân số thập phân đối nhau.

3. So sánh hai số thập phân:
Để so sánh hai số thập phân, ta có thể sử dụng quy tắc so sánh hai số nguyên. Ngoài ra, ta cũng có thể so sánh bằng cách so sánh hai phân số thập phân tương ứng.

B. BÀI TẬP TRẮC NGHIỆM
- File WORD (dành cho quý thầy, cô) chứa các bài tập trắc nghiệm giúp các em ôn tập và kiểm tra kiến thức của mình.

Tài liệu này hi vọng sẽ giúp các em học sinh lớp 6 có thêm nguồn tư liệu hữu ích để tự học và ôn tập môn Toán một cách hiệu quả. Hãy cùng Sytu chinh phục thử thách và đạt được kết quả cao trong học tập!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tia phân giác của góc
Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tia phân giác của góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu và phát biểu được định nghĩa tia phân giác của một góc. + Biết dùng thước đo góc và cách gấp giấy để vẽ tia phân giác của một góc cho trước. Kĩ năng: + Biết vẽ tia phân giác của một góc. + Nhận biết và chứng minh được tia phân giác của một góc. + Vận dụng định nghĩa tia phân giác của một góc để tính số đo góc. I. LÍ THUYẾT TRỌNG TÂM + Tia phân giác của một góc là tia nằm giữa hai cạnh của góc và tạo với hai cạnh ấy hai góc bằng nhau. + Mỗi góc (không phải là góc bẹt) chỉ có một tia phân giác. II. CÁC DẠNG BÀI TẬP Dạng 1 : Vẽ tia phân giác của một góc. Dạng 2 : Chứng minh một tia là phân giác của một góc cho trước. Chứng minh tia Oy là tia phân giác của xOz. Cách 1: + Chứng minh tia Oy nằm giữa hai tia Ox và Oz. + Chứng minh xOy yOz. Cách 2: Chứng minh 1 2 xOy yOz xOz. Dạng 3 : Tính số đo góc.
Chuyên đề vẽ góc cho biết số đo
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề vẽ góc cho biết số đo, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Nắm được trên nửa mặt phẳng xác định có bờ chứa tia Ox bao giờ cũng vẽ được một tia Oy sao cho xOy = m. + Nắm vững được các bước vẽ một góc với số đo cho trước. Kĩ năng: + Biết vẽ góc có số đo cho trước bằng thước thẳng và thước đo góc. I. LÍ THUYẾT TRỌNG TÂM Cho tia Ox, vẽ góc xOy sao cho xOy m 0 m 180: + Đặt thước đo góc sao cho tâm thước trùng với gốc O của tia Ox và tia Ox đi qua vạch 0°. + Kẻ tia Oy qua vạch m° của thước. Dấu hiệu nhận biết tia nằm giữa hai tia: + Trên nửa mặt phẳng bờ chứa tia Ox có hai tia Oy, Oz mà xOy xOz thì Oy nằm giữa tia Ox, Oz. Nhận xét: Trên nửa mặt phẳng cho trước có bờ là tia Ox, bao giờ cũng vẽ được một và chỉ một tia Oy sao cho xOy m. II. CÁC DẠNG BÀI TẬP Dạng 1 : Vẽ góc khi biết số đo. Vẽ một góc có số đo a° cho trước: + Bước 1. Vẽ một tia của góc cần vẽ. + Bước 2. Đặt thước đo góc trên một nửa mặt phẳng bờ chứa tia đã cho sao cho tâm của thước trùng với gốc của tia đã xác định và tia đã cho đi qua vạch 0 của thước. + Bước 3. Kẻ tia còn lại của góc đi qua gốc của tia và vạch a của thước. Dạng 2 : Chứng minh tia nằm giữa hai tia. Trên cùng một nửa mặt phẳng bờ chứa tia Ox, nếu xOy xOz thì tia Oy nằm giữa hai tia Ox và Oz. Dạng 3 : Tính số đo góc. Sử dụng các nhận xét sau: + Nếu tia Oy nằm giữa hai tia Ox và Oz thì xOy yOz xOz. + Hai góc bù nhau có tổng số đo bằng 180°. + Hai góc phụ nhau có tổng số đo bằng 90°.
Khi nào thì $widehat xOy + widehat yOz widehat xOz$
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề Khi nào thì $\widehat {xOy} + \widehat {yOz} = \widehat {xOz}$?, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu được khi nào thì xOy + yOz = xOz? + Nắm vững được khái niệm hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. Kĩ năng: + Nhận biết được hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. + Biết cách cộng số đo hai góc kề nhau có cạnh chung nằm giữa hai cạnh còn lại. + Tính được số đo góc, chỉ ra được tia nằm giữa hai tia. I. LÍ THUYẾT TRỌNG TÂM Tính chất cộng số đo hai góc: + Nếu tia Oy nằm giữa tia Ox và Oz thì xOy + yOz = xOz. + Ngược lại, nếu xOy + yOz = xOz thì Oy nằm giữa hai tia Ox và Oz. Lưu ý: + Ta có thể dùng kết quả sau: Nếu xOy + yOz khác xOz thì Oy không nằm giữa hai tia Ox và Oz. + Cộng liên tiếp: Nếu tia Oy nằm giữa hai tia Ox và Ot; tia Oz nằm giữa hai tia Oy và Ot thì: xOy + yOz + zOt = xOt. Hai góc kề nhau, phụ nhau, bù nhau: + Hai góc kề nhau là hai góc có cạnh chung và hai cạnh còn lại nằm trên hai nửa mặt phẳng đối nhau bờ chứa cạnh chung. + Hai góc phụ nhau là hai góc có tổng số đo bằng 90°. + Hai góc bù nhau là hai góc có tổng số đo bằng 180°. Lưu ý: + Hai góc kề bù là hai góc vừa kề nhau vừa bù nhau. Hai góc kề bù có tổng số đo bằng 180°. + Hai góc cùng phụ (hoặc cùng bù) với một góc thứ ba thì bằng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính số đo góc. Sử dụng nhận xét và định nghĩa sau: + Nếu tia Oy nằm giữa hai tia Ox và Oz thì xOy + yOz = xOz. + Hai góc bù nhau có tổng số đo bằng 180°. + Hai góc phụ nhau có tổng số đo bằng 90°. Dạng 2 : Tia nằm giữa hai tia, tính số đo góc. Nếu xOy + yOz = xOz thì tia Oy nằm giữa hai tia Ox và Oz.
Chuyên đề góc và số đo góc
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề góc và số đo góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu khái niệm góc, góc nhọn, góc tù, góc vuông, góc bẹt. + Nắm được khái niệm điểm nằm trong góc. Kỹ năng: + Biết cách vẽ góc, đặt tên góc, đọc tên góc. + Nhận biết điểm nằm trong góc. + Nhận biết góc nhọn, góc vuông, góc tù, góc bẹt. + Biết cách đo góc bằng thước đo góc, so sánh hai góc. I. LÍ THUYẾT TRỌNG TÂM 1. Góc. Góc tạo bởi hai tia chung gốc: + Gốc chung là đỉnh của góc. Hai tia là hai cạnh của góc. + Đặc biệt: góc bẹt là góc có hai cạnh là hai tia đối nhau. Góc xOy được kí hiệu là xOy hoặc yOx. Điểm nằm trong góc: + Hai tia Ox và Oy không đối nhau, điểm M gọi là điểm nằm trong góc xOy hay M nằm trong góc xOy nếu OM nằm giữa hai tia Ox và Oy. 2. Số đo góc. Đo góc: – Dụng cụ: Thước đo góc. – Cách đo góc xOy: + Bước 1. Đặt thước đo góc sao cho tâm của thước trùng với gốc O của góc, một cạnh của góc đi qua vạch 0. + Bước 2. Xem cạnh thứ hai của góc đi qua vạch nào của thước, giả sử là vạch 120 thì xOy 120. So sánh hai góc: + Nếu hai góc A và B có số đo bằng nhau thì hai góc đó bằng nhau, ta viết A = B. + Nếu số đo của góc A nhỏ hơn số đo của góc B thì góc A nhỏ hơn góc B ta viết A B. Góc vuông, góc nhọn, góc tù: + Góc có số đo bằng 90 là góc vuông. + Góc có số đo nhỏ hơn 90 là góc nhọn. + Góc có số đo lớn hơn góc vuông nhưng nhỏ hơn góc bẹt là góc tù. + Góc có số đo bằng 180 là góc bẹt. II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định góc, vẽ hình. Hai tia bất kì chung gốc đều tạo thành một góc. Dạng 2 : Số đo góc. Bài toán 1: Đo góc. Đổi số đo góc. Đơn vị đo góc. Các bước đo góc: + Đặt thước đo góc để tâm thước trùng với góc cần đo. + Vạch 0 trên thước nằm trên một cạnh. + Cạnh còn lại của góc đi qua vạch nào của thước đo góc thì đó là số đo của góc. Bài toán 2. So sánh góc. Trong hai góc, góc nào có số đo lớn hơn thì lớn hơn. Dạng 3 : Nhận biết góc nhọn, góc vuông, góc tù. Sử dụng các khái niệm góc vuông, góc nhọn, góc tù.