Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề diện tích đa giác

Nội dung Chuyên đề diện tích đa giác Bản PDF - Nội dung bài viết Chuyên đề diện tích đa giácTóm tắt lý thuyết:Bài tập và các dạng toán:A. Các dạng bài minh họa:B. Phiếu bài tự luyện: Chuyên đề diện tích đa giác Tài liệu này bao gồm 06 trang, cung cấp lý thuyết cơ bản về cách tính diện tích đa giác, bao gồm trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán phổ biến. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề diện tích đa giác, kèm theo đáp án và lời giải chi tiết. Đây là tài liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết: Để tính diện tích đa giác, chúng ta thường chia đa giác đó thành các tam giác hoặc tứ giác để tính toán. Sau đó, tính tổng các diện tích tam giác hoặc tứ giác đó để có diện tích của đa giác ban đầu. Hoặc có thể tạo ra một đa giác mới chứa đa giác ban đầu và tính hiệu các diện tích để đạt được kết quả cuối cùng. Bài tập và các dạng toán: A. Các dạng bài minh họa: Dạng 1: Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2: Tính diện tích của đa giác bất kỳ. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3: Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. Phiếu bài tự luyện: Bên cạnh đó, tài liệu cũng cung cấp phiếu bài tự luyện cho học sinh, giúp họ ôn tập và rèn luyện kỹ năng tính toán diện tích đa giác một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề cương giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS thị trấn Văn Điển - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS thị trấn Văn Điển, huyện Thanh Trì, thành phố Hà Nội.
Đề cương ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS Thành Công - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thành Công, quận Ba Đình, thành phố Hà Nội. I. Nội dung ôn tập 1. Đại số: Từ đầu chương 1 đến hết bài “Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp”. 2. Hình học: Từ đầu chương 1 đến hết bài “Hình bình hành”. II. Một số đề tham khảo
Đề cương ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. I. Phần 1 : Nội dung kiến thức cần ôn tập. 1. Các đơn vị kiến thức đã học từ tuần 01 đến hết tuần 06. 2. Một số câu hỏi trọng tâm. Câu 1. Nêu các quy tắc nhân đơn thức với đa thức, đa thức với đa thức. Câu 2. Phát biểu và nêu công thức 7 hằng đẳng thức đáng nhớ. Câu 3. Nêu định nghĩa tứ giác, định lý tổng các góc trong 1 tứ giác. Câu 4. Nêu định nghĩa hình thang, hình thang cân, tính chất và dấu hiệu nhận biết hình thang cân. Câu 5. Nêu định nghĩa, tính chất đường trung bình của tam giác, hình thang. Câu 6. Nêu định nghĩa, tính chất và dấu hiệu nhận biết hình bình hành. Câu 7. Nêu định nghĩa về 2 điểm đối xứng với nhau qua 1 đường thẳng, qua 1 điểm. Tính chất của các hình đối xứng với nhau qua 1 điểm, qua 1 đường thẳng. II. Phần 2 : Một số dạng bài tập minh họa. A. Trắc nghiệm. B. Tự luận.
Hướng dẫn ôn tập giữa kì 1 Toán 8 năm 2022 - 2023 THCS Thanh Am - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thanh Am, quận Long Biên, thành phố Hà Nội. I. Nội dung ôn tập 1.1. Đại số. – Quy tắc nhân đa thức. – Các hẳng đẳng thức đáng nhớ. – Các phương pháp phân tích đa thức thành nhân tử. – Chia đa thức một biến đã sắp xếp. 1.2. Hình học. – Định lý tổng các góc trong một tứ giác. – Định nghĩa, tính chất, dấu hiệu nhận biết của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật. – Định nghĩa, tính chất đường trung bình của tam giác, hình thang. – Đối xứng trục, đối xứng tâm. II. Một số bài tập cụ thể