Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 10 năm 2022 - 2023 trường THPT Đồng Hỷ - Thái Nguyên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi cuối học kỳ 2 môn Toán 10 năm học 2022 – 2023 trường THPT Đồng Hỷ, tỉnh Thái Nguyên; đề thi có đáp án và thang điểm. Trích dẫn Đề thi học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Đồng Hỷ – Thái Nguyên : + Một doanh nghiệp kinh doanh xe gắn máy các loại. Hiện nay đang tập trung chiến lược kinh doanh xe ga Vison với chi phí mua vào là 28 triệu đồng một chiếc và bán ra với giá 32 triệu đồng một chiếc. Với giá bán như trên thì một năm bán được 600 chiếc. Nhằm thúc đẩy doanh số, doanh nghiệp dự định giảm giá bán và ước tính nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để thu được lợi nhuận lớn nhất? + Trong bản vẽ thiết kế, vòm của ô thoáng trong hình vẽ dưới là một nửa hình elip có chiều rộng 1 2 A A cm 240 và chiều cao 1 OB cm 60. Tính chiều cao h của ô thoáng tại điểm C có hình chiếu vuông góc lên trục A A1 2 cách điểm O là điểm chính giữa của đế ô thoáng 75cm. + Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình Ra-da của trạm điều khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0) vị trí của tàu A được xác định bởi công thức 1 35 3 25 x t y t vị trí tàu B có tọa độ là M tt (6 40 5 30). Nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy cho đến khi đạt khoảng cách ngắn nhất giữa hai tàu thì góc giữa đường thẳng đi qua vị trí của hai tàu và đường thẳng chứa trục Ox gần nhất với kết quả nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Phan Ngọc Hiển - Cà Mau
Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT Phan Ngọc Hiển, huyện Năm Căn, tỉnh Cà Mau tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 106 gồm 10 câu trắc nghiệm và 04 câu tự luận, đề thi gồm 02 trang, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong mặt phẳng chứa hệ trục tọa độ Oxy, cho hai điểm A(−2;1), B(2;3) và đường thẳng ∆: x − 2y − 1 = 0. a) Viết phương trình tham số của đường thẳng d đi qua hai điểm A và B. b) Viết phương trình đường tròn có tâm A và tiếp xúc với đường thẳng ∆. [ads] + Tìm các giá trị m nguyên để bất phương trình (m + 1)x^2 – 2(m + 1)x + 3 < 0 vô nghiệm với mọi x thuộc R. + Trong các đường thẳng có phương trình sau, đường thẳng nào cắt đường thẳng d: 2x – 3y – 8 = 0.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Phan Chu Trinh - Đắk Lắk
Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT Phan Chu Trinh, huyện Ea H’leo, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Chu Trinh – Đắk Lắk gồm có 04 mã đề: 123, 345, 567, 789; đề gồm 25 câu trắc nghiệm (05 điểm) và 04 câu tự luận (05 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Chu Trinh – Đắk Lắk : + Trong không gian Oxy, cho hai điểm A(1;3), B(−2;5) và đường thẳng ∆: x – 4y + 1 = 0. a) Viết phương trình tham số đường thẳng đi qua điểm B và có VTCP u = (1;-2). b) Viết phương trình đường có tâm A và tiếp xúc với đường thẳng ∆. c) Tìm điểm M ∈ ∆ sao cho OM = 1. [ads] + Trong không gian Oxy, cho hai đường thẳng ∆1: 2x – y + 1 = 0 và ∆2: x + 2y – 7 = 0. Viết phương trình đường thẳng ∆ qua gốc toạ độ sao cho ∆ tạo với ∆1 và ∆2 tam giác cân có đỉnh là giao điểm ∆1 và ∆2. + Cho phương trình đường tròn x^2 + y^2 – 2ax – 2by + c = 0. Bán kính của đường tròn được xác định bởi công thức nào sau đây?
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Phú Lương - Thái Nguyên
Ngày … tháng 06 năm 2020, trường THPT Phú Lương, tỉnh Thái Nguyên tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán 10 giai đoạn cuối học kì 2 năm học 2019 – 2020, đánh dấu kết thúc một năm học với nhiều “biến động” do tình hình dịch bệnh. Đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Phú Lương – Thái Nguyên mã đề 123 gồm có 03 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 24 câu, chiếm 06 điểm, phần tự luận gồm 05 câu, chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết các mã đề 123, 134, 145, 156. I. Mục tiêu 1. Kiến thức : + Nhớ các khái niệm: Bất phương trình, tam thức bậc hai, cung và góc lượng giác, các công thức lượng giác, các dạng phương trình đường thẳng, phương trình đường tròn. + Trình bày được các quy trình: Giải bất phương trình, xét dấu các biểu thức, xác định và tính giá trị lượng giác của một cung, lập phương trình đường thẳng, phương trình đường tròn. + Xác định được, tìm được: Nghiệm của bất phương trình bậc nhất, bậc hai, dấu của các giá trị lượng giác, biến đổi được các biểu thức lượng giác, tìm được giao điểm của các đường thẳng, đường thẳng và đường tròn. + Vận dụng: dấu của tam thức bậc hai để biện luận nghiệm của phương trình bậc hai, vận dụng công thức lượng giác để tính giá trị lượng giác, chứng minh biểu thức lượng giác, vận dụng phương pháp tọa độ để tìm điểm, đường thẳng, đường tròn. 2. Kỹ năng : Thành thạo kỹ năng giải bất phương trình bậc nhất, bậc hai, bất phương trình tích, tính toán các giá trị lượng giác, viết phương trình đường thẳng, phương trình đường tròn. Có kỹ năng phân tích, đánh giá, tổng hợp. [ads] 3. Tư duy thái độ : Nghiêm túc, cẩn thận, chính xác, khoa học. 4. Năng lực : Có năng lực làm việc độc lập, ra quyết định, sử dụng các thuật ngữ và kí hiệu toán học. II. Ma trận phân bố số câu, số điểm và mô tả đề kiểm tra Trắc nghiệm: 24 câu = 6 điểm. Trong đó: Nhận biết 10 câu = 2,5 điểm; thông hiểu 9 câu = 2,25 điểm; vận dụng 3 câu = 0,75 điểm; vận dụng cao: 2 câu = 0,5 điểm. Tự luận: 8 câu = 4 điểm. Trong đó: Nhận biết 2 câu = 1,0 điểm; thông hiểu 2 câu = 2 điểm; vận dụng: 1 câu = 0,5 điểm; vận dụng cao: 1 câu = 0,5 điểm.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Phan Đình Phùng - Hà Nội
Thứ Tư ngày 17 tháng 06 năm 2020, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kì thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội gồm 04 mã đề: 652, 653, 654, 655; đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, trong đó phần trắc nghiệm gồm 12 câu, chiếm 03 điểm, phần tự luận gồm 04 câu, chiếm 07 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Đình Phùng – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có G là trọng tâm và tọa độ các đỉnh A(−1;1), B(1;7), C(3;-2). a) Viết phương trình đường tròn tâm G và tiếp xúc với cạnh AC. b) Tính góc giữa hai đường thẳng AB và AC. c) Cho điểm M(m;n) thay đổi thỏa mãn MG = 2 và số thực p thay đổi.Tìm giá trị nhỏ nhất của biểu thức E = √((m – p)^2 + (n + 1)^2). [ads] + Thống kê điểm thi của 30 em học sinh đứng đầu kì thi học sinh giỏi Toán (thang điểm là 20 ), kết quả được cho trong bảng sau đây. Mốt của bảng phân bố đã cho là? + Trong mặt phẳng tọa độ Oxy, cho điểm A(1;2), B(−2;3), C(−2;1). Điểm M(a;b) thuộc Oy sao cho: |MA + MB + MC| nhỏ nhất, khẳng định nào sau đây đúng?