Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng

Tài liệu gồm 537 trang, tổng hợp kiến thức trọng tâm, các dạng toán và bài tập, câu hỏi trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh rèn luyện khi học chương trình Giải tích 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. CHỦ ĐỀ 1 – NGUYÊN HÀM. A KIẾN THỨC TRỌNG TÂM 1. Nguyên hàm và tính chất. 1.1 Nguyên hàm. 1.2 Tính chất. 2. Phương pháp tính nguyên hàm. 2.1 Phương pháp tính nguyên hàm đổi biến số. 2.2 Phương pháp tính nguyên hàm từng phần. 2.3 Bảng nguyên hàm cơ bản. 2.4 Bảng nguyên hàm mở rộng. B CÁC DẠNG TOÁN VÀ BÀI TẬP + Dạng toán 1.1. Tính nguyên hàm bằng bảng nguyên hàm. + Dạng toán 1.2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng toán 1.3. Nguyên hàm từng phần. C CÂU HỎI TRẮC NGHIỆM 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án. CHỦ ĐỀ 2 – TÍCH PHÂN. A KIẾN THỨC TRỌNG TÂM 1. Khái niệm tích phân. 1.1 Định nghĩa tích phân. 1.2 Tính chất của tích phân. 2. Phương pháp tính tích phân. 2.1 Phương pháp đổi biến số. 2.2 Phương pháp tích phân từng phần. B CÁC DẠNG TOÁN VÀ BÀI TẬP + Dạng toán 2.4. Tích phân cơ bản và tính chất tính phân. + Dạng toán 2.5. Tích phân hàm số phân thức hữu tỉ. + Dạng toán 2.6. Tính chất của tích phân. + Dạng toán 2.7. Tích phân hàm số chứa dấu giá trị tuyệt đối. + Dạng toán 2.8. Phương pháp đổi biến số. + Dạng toán 2.9. Tích phân từng phần. C CÂU HỎI TRẮC NGHIỆM 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án. CHỦ ĐỀ 3 – ỨNG DỤNG TÍCH PHÂN. A KIẾN THỨC TRỌNG TÂM 1. Hình phẳng giới hạn bởi một đường cong và trục hoành. 2. Hình phẳng giới hạn bởi hai đường cong. 3. Tính thể tích khối tròn xoay. B CÁC DẠNG TOÁN VÀ BÀI TẬP + Dạng toán 3.10. Diện tích hình phẳng. + Dạng toán 3.11. Tìm vận tốc, gia tốc, quãng đường trong vật lí. + Dạng toán 3.12. Thể tích của vật thể. + Dạng toán 3.13. Tính thể tích của vật thể tròn xoay. C CÂU HỎI TRẮC NGHIỆM 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương pháp vi phân tìm nguyên hàm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp vi phân tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. Vi phân của hàm số. II. Một số công thức vi phân quan trọng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm mở đầu về nguyên hàm
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mở đầu về nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Vi phân của hàm số. 2. Nguyên hàm. a. Định nghĩa. b. Định lý. c. Tính chất của nguyên hàm. d. Bảng công thức nguyên hàm. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
203 bài tập nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán
Tài liệu gồm 126 trang, được tổng hợp bởi thầy giáo Lương Anh Nhật, tuyển tập 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán: + THPT CHUYÊN LAM SƠN – THANH HÓA NĂM 2020 – 2021 LẦN 01: Cho hàm số f(x) xác định trên R, thỏa mãn f x x 2 1 và f 3 5. Giả sử phương trình f x 999 có hai nghiệm 1 x và 2 x. Tính tổng 1 2 S x x log log. + CHUYÊN QUANG TRUNG – BÌNH PHƯỚC NĂM 2020 – 2021 LẦN 02: Cho parabol 2 1P 6 y x cắt trục hoành tại hai điểm phân biệt AB và đường thẳng d y a 0 6 a. Xét parabol P2 đi qua AB và có đỉnh thuộc đường thẳng y a. Gọi 1 S là diện tích hình phẳng giới hạn bởi P1 và d; 2S là diện tích hình phẳng giới hạn bởi P2 và trục hoành (tham khảo hình vẽ). + CHUYÊN NGUYỄN DU – ĐĂKLẮK NĂM 2020 – 2021: Cho một viên gạch men có dạng hình vuông OABC như hình vẽ. Sau khi tọa độ hóa, ta có O A B C và hai đường cong lần lượt là đồ thị hàm số 3 y x và 3 y x. Tính diện tích phần tô đậm trên viên gạch men.
Toàn cảnh nguyên hàm - tích phân và ứng dụng trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 22 trang, tuyển chọn 159 câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm – tích phân và ứng dụng có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020