Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 8 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra học sinh năng khiếu môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 8 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Cho ABC có độ dài các cạnh lần lượt là a, b, c; chu vi của tam giác là 2p. Chứng minh rằng? + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. a) Chứng minh: E là trực tâm của ABC từ đó suy ra BC vuông góc với AE. b) Chứng minh ba điểm D, N, F thẳng hàng. c) Gọi K là giao điểm của AC và MN. Chứng minh: AP.CK = AK.CP d) Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất. + Người ta dùng các số 1, 2, 3, 4, 5, 6, 7, 8 để gán cho các đỉnh của một hình lập phương, hai đỉnh khác nhau thì gán các số khác nhau. Sau đó tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau?

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có lời giải
Tài liệu gồm 354 trang, tuyển tập 50 đề ôn thi chọn học sinh giỏi môn Toán lớp 8 có đáp án và lời giải chi tiết, giúp học sinh lớp 8 ôn tập để chuẩn bị cho kỳ thi chọn HSG Toán 8 cấp trường, cấp quận / huyện, cấp tỉnh / thành phố.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hương Khê - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Hương Khê, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hương Khê – Hà Tĩnh : + Ông Bảo đã thu lãi 400 triệu đồng (chưa trừ tiền thuế), khi mua đất đầu tư. Khi ông mua, mỗi m2 đất có giá 1 triệu đồng, nhưng khi bán, có giá gấp 5 lần. Hỏi miếng đất ông Bảo đầu tư, có diện tích bằng bao nhiêu m2? + Cô Hân có nuôi 80 con gồm gà trống, gà mái và vịt. Số gà mái gấp ba lần số gà trống. 60% số gia cầm này là vịt. Vậy có bao nhiêu con gà mái? + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC b) Chứng minh DEC AEF c) Gọi I là giao điểm của FD và BE. Chứng minh HI.BE = HE.BI.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hà Đông – Hà Nội : + Cho các số dương a, b, c thỏa mãn a + b + c = 2022. Tìm giá trị lớn nhất của biểu thức P. + Cho tam giác ABC vuông tại A (AC > AB). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thắng song song với AH, cắt đường thẳng AC tại P. 1) Chứng minh AKC đồng dạng BPC. 2) Gọi Q là trung điểm của BP. Chứng minh BP ВС. 3) Tia AQ cắt BC tại I. Chứng minh: HB АН ВС IB. + Có 5 điểm nằm trong một hình vuông cạnh a = 36,7 (đơn vị dài). Chứng minh rằng tồn tại một điểm nằm trong hình vuông mà khoảng cách từ điểm đó đến 5 điểm nói trên đều lớn hơn 10.
Đề kiểm định chất lượng Toán 8 năm 2021 - 2022 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề kiểm định chất lượng Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghi Lộc – Nghệ An : + Chứng minh rằng với mọi n thuộc số tự nhiên thì biểu thức M chia hết cho 21. + Tìm số tự nhiên gồm 4 chữ số thỏa mãn đồng thời hai tính chất: a) Khi chia số đó cho 100 ta được số dư là 6 b) Khi chia số đó cho 51 ta được số dư là 17. + Chứng minh rằng với mọi a thuộc Z thì N là một số chính phương.