Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức và ứng dụng - Nguyễn Đăng Ái

Chuyên đề số phức và ứng dụng do thầy Nguyễn Đăng Ái biên soạn gồm 369 trang, bao gồm lý thuyết, phân dạng và hướng dẫn giải, ví dụ minh họa và bài tập có lời giải chi tiết chủ đề số phức. Nội dung tài liệu : I. CƠ BẢN VÀ CÁC PHÉP TOÁN TRÊN TẬP SỐ PHỨC 1.1 Các định nghĩa về tập số phức C 1.2. Các phép toán trên tập số phức 1.3. Các tính chất cơ bản của số phức 1.4. Lũy thừa của số ảo in – Cấp số cộng và cấp số nhân trong số phức 1.5. Hàm số phức – Bài toán đồng nhất hàm bằng số ảo f(i) = Ai + B II. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC – CÔNG THỨC Ơ LE 2.1. Cách chuyển từ dạng đại số sang dạng lượng giác của một số phức 2.2. Ứng dụng của dạng lượng giác – Công thức Ơ le – Công thức Moivre cơ bản 2.3. Ứng dụng dạng lượng giác vào một số bài toán cực trị lũy thừa lớn 2.4. Ứng dụng dạng lượng giác vào một số bài toán số phức có mô đun bằng 1 III. PHƯƠNG TRÌNH BẬC NHẤT – HỆ PHƯƠNG TRÌNH BẬC NHẤT 3.1. Phương trình bậc nhất chứa một biến 3.2. Phương trình bậc nhất chứa hai biến 3.3. Biện luận theo tham số phức một phương trình bậc nhất phức 3.4. Hệ phương trình bậc nhất trong số phức IV. CĂN BẬC HAI – PHƯƠNG TRÌNH BẬC CAO – XỬ LÍ MÔ ĐUN 4.1. Căn bậc hai của một số âm 4.2. Căn bậc hai của một số phức 4.3. Phương trình bậc 2 trên tập số phức 4.4. Phương trình bậc cao – Phân tích nhân tử – Đặt ẩn phụ – Khai căn thức 4.5. Các định lí VIET áp dụng vào phương trình bậc cao trắc nghiệm phức 4.6. Phương trình phức dạng đa thức với các hệ số thực 4.7. Xử lí mô đun trong các phương trình phức V. BẤT ĐẲNG THỨC ĐẠI SỐ PHỨC – BÀI TOÁN CỰC TRỊ ĐẠI SỐ 5.1. Bất đẳng thức tam giác – Bài toán số phức đồng dạng 5.2. Bất đẳng thức CÔ SI – Bất đẳng thức BUNHIA vận dụng trong số phức 5.3. Một số bất đẳng thức không mẫu mực trong số phức VI. MẶT PHẲNG PHỨC – GIẢI TÍCH TRÊN MẶT PHẲNG PHỨC 6.1. Biểu diễn điểm và các công thức cơ bản trên mặt phẳng phức 6.2. Bất đẳng thức tam giác ứng dụng vào một số bất đẳng thức hình học 6.3. Quỹ tích là đường thẳng trên mặt phẳng phức 6.4. Quỹ tích là đường tròn trên mặt phẳng phức 6.5. Elip trong mặt phẳng phức – Các bài toán nâng cao 6.6. Quỹ tích là đường hypebol cơ bản 6.7. Các đường cong bất kì: Đường thẳng – Đường tròn – Elip – Hypebol – Parabol 6.8. Phép quay trong số phức – Nâng cao tư duy véc tơ phức 6.9. Bài toán tương giao trên mặt phẳng phức – Hệ phương trình mô đun phức 6.10. Biểu diễn số phức là một miền trên hình phẳng – Cực trị phức trên miền D 6.11. Bài toán tâm tỉ cự trên mặt phẳng phức 6.12. Bình phương vô hướng ứng dụng trên mặt phẳng phức 6.13. Các số phức có mô đun bằng nhau – Bài toán phân bố véc tơ trên vòng tròn

Nguồn: toanmath.com

Đọc Sách

Chuyên đề số phức ôn thi THPT 2021 - Nguyễn Bảo Vương
Tài liệu gồm 229 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề số phức (Giải tích 12 chương 4), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. Chuyên đề 1 . XÁC ĐỊNH SỐ PHỨC VÀ CÁC PHÉP TOÁN SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Xác định các yếu tố cơ bản của số phức. + Dạng toán 2. Biểu diễn hình học cơ bản của số phức. + Dạng toán 3. Thực hiện các phép tính cộng, trừ, nhân, chia cơ bản của số phức. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Tìm số phức thỏa mãn điều kiện cho trước. + Dạng toán 2. Một số bài toán liên quan đến số phức có lũy thừa bậc cao, chứa tham số. Chuyên đề 2 . TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ – GIỎI – XUẤT SẮC (Mức độ 7 – 8 – 9 – 10 điểm). + Dạng toán 1. Tập hợp điểm biểu diễn số phức là đường tròn. + Dạng toán 2. Tập hợp điểm biểu diễn số phức là đường thẳng. + Dạng toán 3. Tập hợp điểm biểu diễn số phức là đường conic. + Dạng toán 4. Tập hợp điểm biểu diễn số phức là một miền. + Dạng toán 5. Một số dạng toán khác liên quan đến tập hợp điểm biểu diễn số phức. Chuyên đề 3 . PHƯƠNG TRÌNH BẬC HAI VÀ PHƯƠNG TRÌNH BẬC CAO SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). Chuyên đề 4 . BÀI TOÁN CỰC TRỊ SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Quỹ tích điểm biểu diễn số phức là đường thẳng. + Dạng toán 2. Quỹ tích điểm biểu diễn số phức là đường tròn. + Dạng toán 3. Quỹ tích điểm biểu diễn số phức là Elip.
300 câu vận dụng cao số phức ôn thi THPT môn Toán
Tài liệu gồm 25 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 300 câu vận dụng cao (VDC) số phức có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 300 câu vận dụng cao số phức ôn thi THPT môn Toán: + Xét các số phức z thỏa mãn điều kiện |z − 1 + i| = 2. Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn các số phức w = z + 2 − i là: A đường tròn tâm I(−3; 2), bán kính R = 2. B đường tròn tâm I(3; −2), bán kính R = 2. C đường tròn tâm I(1; −1), bán kính R = 2. D đường tròn tâm I(1; 0), bán kính R = 2. + Cho số phức z thỏa mãn z + i/z − i là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là: A Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0, 1). B Hình tròn tâm O, bán kính R = 1 (kể cả biên). C Đường tròn tâm O, bán kính R = 1. D Hình tròn tâm O, bán kính R = 1 (không kể biên). + Trong mặt phẳng tọa độ Oxy, cho hình bình hành OABC có tọa độ điểm A(3; 1), C(−1; 2) (như hình vẽ bên). Số phức nào sau đây có điểm biểu diễn là điểm B?
Tổng ôn tập TN THPT 2020 môn Toán Số phức
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề số phức; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Số phức: Vấn đề 1. Khái niệm số phức và các phép toán trên số phức. Vấn đề 2. Phương trình số phức. Vấn đề 3. Biểu diễn điểm số phức.
Số phức và các phép toán về số phức - Diệp Tuân
Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn giải các dạng toán số phức và các phép toán về số phức trong chương trình Giải tích 12 chương 4 bài số 1. Khái quát nội dung tài liệu số phức và các phép toán về số phức – Diệp Tuân: Nhóm bài toán 1 . Tính toán cộng trừ, nhân chia các số phức. + Áp dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. + Số phức và thuộc tính của nó. + Lũy thừa đơn vị ảo. Nhóm bài toán 2 . Hai số phức bằng nhau. + Áp dụng các công thức cộng, trừ, nhân, chia số phức để rút gọn đưa về tính chất hai số phức bằng nhau. + a + bi = c + di khi và chỉ khi a, b, c, d thuộc R. Nhóm bài toán 3 . Tính toán số phức có chứa lũy thừa đơn vị ảo i^n. + Áp dụng các công thức lũy thừa đơn vị ảo. + Áp dụng các phép toán cộng trừ, nhân chai số phức. [ads] Nhóm bài toán 4 . Tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w. + Áp dụng phép chia hai số phức, ta cần nhân thêm số phức liên hợp của mẫu số. + Nếu sử dụng casio, ta chuyển về chế độ CMPLX (mode 2) (i tương ứng ENG). + Khi bài toán yêu cầu tìm các thuộc tính của số phức (phần thực, phần ảo, môđun hoặc số phức liên hợp) mà đề bài cho giả thiết chứa hai thành phần trong ba thành phần thì ta sẽ gọi số phức z rồi sau đó thu gọn và sử dụng kết quả hai số phức bằng nhau, giải hệ. Nhóm bài toán 5 . Các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo. + Số phức z thuần ảo ⇔ phần thực a = 0. + Số phức z là số thực ⇔ phần ảo b = 0. Nhóm bài toán 6 . Nhóm bài toán lấy môđun hai vế của đẳng thức số phức. + Sử dụng phép kéo theo của hai số phức bằng nhau. + Kỹ thuật này chỉ được thực hiện được khi biểu thức giả thiết của bài toán được đưa về các dạng chuẩn. Nhóm bài toán 7 . Chuẩn hóa số phức.