Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn

Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm 2021 - 2022 trường THPT Triệu Quang Phục - Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK1 Toán 11 năm 2021 – 2022 trường THPT Triệu Quang Phục – Hưng Yên; đề thi có đáp án. Trích dẫn đề thi HK1 Toán 11 năm 2021 – 2022 trường THPT Triệu Quang Phục – Hưng Yên : + Trong mặt phẳng cho 5 đường thẳng song song 1 2 3 4 5 a a a a a và 7 đường thẳng song song 1 2 3 4 5 6 7 b b b b b b b đồng thời cắt 5 đường thẳng trên. Tính số hình bình hành tạo nên bởi 12 đường thẳng đã cho? + Tại chương trình “Tủ sách học đường”, một mạnh thường quân đã trao tặng các cuốn sách tham khảo gồm 7 cuốn sách Toán, 8 cuốn sách Vật Lí, 9 cuốn sách Hóa Học (các cuốn sách cùng loại giống nhau) để làm phần thưởng cho 12 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong số 12 học sinh trên có hai bạn Quang và Thiện. Tính xác suất để hai bạn Quang và Thiện có phần thưởng giống nhau? + Lan đang tiết kiệm để mua một cây guitar. Trong tuần đầu tiên Lan để dành 42 đô la, và trong mỗi tuần tiếp theo, Lan đã thêm 8 đô la vào tài khoản tiết kiệm của mình. Cây guitar Lan cần mua có giá 400 đô la. Hỏi vào tuần thứ bao nhiêu thì Lan có đủ tiền để mua cây guitar đó? + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác 1 1 1 2 2 2 3 3 3 ABC A B C A B C sao cho ABC 1 1 1 là một tam giác đều cạnh bằng 3. Với mỗi số nguyên dương n 2, tam giác A B C n n n là tam giác trung bình của tam giác A B C n n n 1 1 1. Với mỗi số nguyên dương n, kí hiệu n S tương ứng là diện tích hình tròn ngoại tiếp tam giác A B C n n n. Tổng S S S S 1 2 2021 là? + Phép biến hình nào sau đây không có tính chất “Biến hai điểm phân biệt M N lần lượt thành hai điểm M N mà M N MN”. A. Phép tịnh tiến. B. Phép quay. C. Phép đối xứng trục. D. Phép vị tự với tỉ số k > 1.
Đề thi cuối học kì 1 Toán 11 năm 2021 - 2022 trường THPT Đông Hà - Quảng Trị
Đề thi cuối học kì 1 Toán 11 năm 2021 – 2022 trường THPT Đông Hà – Quảng Trị gồm 35 câu trắc nghiệm (07 điểm) và 04 câu tự luận (03 điểm), thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết.
Đề thi cuối học kì 1 Toán 11 năm 2021 - 2022 trường THPT Quảng Xương 2 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kì 1 Toán 11 năm học 2021 – 2022 trường THPT Quảng Xương 2, tỉnh Thanh Hóa; đề thi gồm 35 câu trắc nghiệm (07 điểm) và 03 câu tự luận (03 điểm), thời gian làm bài 90 phút, đề thi có đáp án mã đề 111. Trích dẫn đề thi cuối học kì 1 Toán 11 năm 2021 – 2022 trường THPT Quảng Xương 2 – Thanh Hóa : + Một tổ có 9 học sinh gồm 5 học sinh nam và 4 học sinh nữ, trong đó có 2 học sinh nam tên Phúc và Đức. Xếp ngẫu nhiên 9 học sinh trên thành một hàng ngang. Có bao nhiêu cách xếp sao cho hai học sinh Phúc và Đức luôn đứng cạnh nhau, đồng thời các học sinh nam còn lại không đứng cạnh nhau và cũng không đứng cạnh Phúc và Đức. + Cho tứ diện ABCD. Gọi I J lần lượt là trung điểm của AC và AD P là mặt phẳng đi qua IJ cắt cạnh BD BC lần lượt tại M N với M N MN DC. Mệnh đề nào dưới đây sai ? A. Hai đường thẳng CD và MN song song. B. Hai đường thẳng IJ và MN song song. C. Hai đường thẳng BC và MN song song. D. Hai đường thẳng IJ và CD song song. + Trong không gian, cho ba đường thẳng phân biệt a b c thỏa mãn a b b c. Mệnh đề nào sau đây sai ? A. Có đúng một mặt phẳng đi qua cả hai đường thẳng a và b. B. a c. C. Ba đường thẳng a b c cùng nằm trên một mặt phẳng. D. Có đúng một mặt phẳng đi qua cả hai đường thẳng b và c.
Đề thi cuối học kỳ 1 Toán 11 năm 2021 - 2022 trường Như Thanh - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng cuối học kỳ 1 môn Toán lớp 11 năm học 2021 – 2022 trường THCS & THPT Như Thanh – Thanh Hóa. Trích dẫn đề thi cuối học kỳ 1 Toán 11 năm 2021 – 2022 trường Như Thanh – Thanh Hóa : + Có 7 quyển sách toán khác nhau, 6 quyển sách lý khác nhau và 5 quyển sách hóa khác nhau. Có bao nhiêu cách chọn từ đó 4 quyển sách?. Tính xác suất để trong 4 quyển sách được chọn có đầy đủ cả ba loại sách nói trên. + Với n là số nguyên dương thỏa mãn 3 2 1 3 3 52 1 C A n n n. Trong khai triển biểu thức 3 2 2 n x y gọi Tk là số hạng mà tổng số mũ của x và y của số hạng đó bằng 34. Hệ số của Tk là? + Có bao nhiêu số tự nhiên có bảy chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3?