Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn

Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Phước Long, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Phước Long – TP HCM : + Một hộp đựng 22 viên bi khác nhau trong đó có 12 viên bi đỏ và 10 viên bi vàng. Chọn ngẫu nhiên từ hộp 7 viên bi và tính xác suất để: a) chọn đươc 7 viên bi cùng màu. b) chọn được 7 viên bi có đủ hai màu và thỏa mãn điều kiện số viên bi màu đỏ nhiều hơn số viên bi màu vàng. + Xếp 12 quyển sách gồm 1 quyển sách Hóa, 3 quyển sách Lý và 8 quyển sách Toán (trong đó có 3 quyển Toán T1, Toán T2 và Toán T3) thành một hàng trên giá sách. Tính xác suất để mỗi quyển sách Lý phải nằm giữa hai quyển sách Toán và đồng thời ba quyển sách Toán T1, Toán T2, Toán T3 luôn xếp cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SD và AB. a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b) Chứng minh hai mặt phẳng (OMN) và (SBC) song song với nhau. c) Trên cạnh SA lấy điểm H sao cho HS = 2HA. Gọi G là trọng tâm tam giác SCD, chứng minh HG song song với mặt phẳng (SCN).
Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Hữu Huân – TP HCM : + Biển số xe máy của tỉnh K gồm hai dòng (hình 1). Dòng thứ nhất là 68XY, trong đó X là một trong 24 chữ cái, Y là một trong 10 chữ số. Dòng thứ hai là abc.de, trong đó a, b, c, d, e là các chữ số. Biển số xe được gọi là “đẹp” khi dòng thứ hai có tổng các chữ số là số có chữ số tận cùng là 8 và có đúng 4 chữ số giống nhau. Cô Vân đăng kí một biển số cho chiếc xe vừa mua. Tính xác suất cô Vân đăng kí được biển số xe “đẹp”. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N là trung điểm SD, SA. a) Chứng minh: (OMN) // (SBC). b) Gọi G là trọng tâm tam giác ACD, I là giao điểm của BM và CN. Chứng minh: GI // (SAD). c) Gọi (P) là mặt phẳng qua G và song song với (SAD). Tìm thiết diện của hình chóp và mp(P). Thiết diện là hình gì? + Một bàn dài có 6 ghế được đánh số từ 1 đến 6. Cô Trinh muốn xếp 3 bạn nam và 3 bạn nữ ngồi vào bàn với điều kiện ghế số 1 và ghế số 2 phải là 2 bạn nữ. Hỏi cô Trinh có bao nhiêu cách xếp như vậy?
Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phan Đăng Lưu TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phan Đăng Lưu TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Phan Đăng Lưu, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Phan Đăng Lưu – TP HCM : + Nhân dịp năm mới, Tổ trưởng tổ Toán – Tin của một trường THPT có 10 bao lì xì loại 200 ngàn đồng cho mỗi bao lì xì và 20 bao lì xì loại 100 ngàn đồng cho mỗi bao lì xì. Một giáo viên nữ đẹp được chọn ngẫu nhiên 3 bao lì xì, tính xác suất để: a) được 3 bao lì xì loại 200 ngàn đồng. b) được ít nhất một bao lì xì loại 200 ngàn đồng. + Cho hình chóp S.ABCD, có ABCD là hình bình hành. Gọi M là trung điểm các đoạn SC và N là trọng tâm tam giác ABC. Trên đoạn SD lấy điểm J sao cho SJ = 2JD. a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD); (SAC) và (SBD). b) Tìm giao điểm I của đường thẳng SD và mặt phẳng (AMN). c) Chứng minh đường thẳng SB song song mặt phẳng (AMN). d) Chứng minh đường thẳng CJ song song mặt phẳng (AMN). + Từ các số 0, 1, 2, 3, 4, 5, 7, 8 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và chia hết cho 5?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Nguyễn Trung Thiên Hà Tĩnh
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Nguyễn Trung Thiên Hà Tĩnh Bản PDF Đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Trung Thiên – Hà Tĩnh gồm 25 câu trắc nghiệm (05 điểm) và 03 câu tự luận (05 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Trung Thiên – Hà Tĩnh : + Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai đường thẳng không song song với nhau thì chéo nhau. B. Hai đường thẳng không có điểm chung thì chéo nhau. C. Hai đường thẳng chéo nhau thì không có điểm chung. D. Hai đường thẳng nằm trên hai mặt phẳng phân biệt thì chéo nhau. + Cho tứ diện ABCD, gọi M, N lần lượt là trung điểm của AB, CD và P là điểm thuộc cạnh BC (P không là trung điểm của BC). Thiết diện của tứ diện khi cắt bởi mặt phẳng (MNP) là? A. Tứ giác. B. Ngũ giác. C. Lục giác. D. Tam giác. + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Có bao nhiêu cách sắp xếp 8 học sinh gồm 4 nam và 4 nữ ngồi vào hai dãy ghế đó sao cho 2 bạn ngồi đối diện nhau khác giới và mỗi ghế có đúng một học sinh ngồi.