Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 8 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 8 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Gieo hai con xúc xắc cân đối, đồng chất và giống hệt nhau. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc này trong cùng một lần gieo là số lớn hơn 8 2. Tìm tất cả số nguyên tố p, q sao cho A 2 2 p pq q 3 là bình phương của một số tự nhiên. + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. Gọi M, N lần lượt là trung điểm của BC, AC; gọi I, P lần lượt là điểm đối xứng của H qua D và M. a) Chứng minh rằng tứ giác BIPC là hình thang cân. b) Trên đoạn thẳng AP lấy điểm O sao cho OP = OC. Gọi G là giao điểm của OH và AM. Chứng minh ba điểm B, G, N thẳng hàng. c) Gọi Q là giao điểm của AH và EF. Chứng minh rằng 2 AQ DB DC AD HQ. + Tìm đa thức f x biết f x chia cho x 3 dư 5 f x chia cho x 5 dư 7 f x chia cho x 3 5 được thương là 2x và còn dư.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa Bản PDF - Nội dung bài viết Giới thiệu đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Giới thiệu đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Chào quý thầy cô giáo và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 từ phòng GD&ĐT Vĩnh Lộc - Thanh Hóa. Đề thi bao gồm câu hỏi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Ví dụ về câu hỏi trong đề giao lưu: 1. Cho tam giác ABC có phân giác AD. Vẽ tia Cx sao cho góc BCX bằng 1/2 góc BAC. Tia Cx cắt AD tại điểm E và trung điểm của DE là I. Hãy chứng minh rằng: a) Tam giác ABD đồng dạng với tam giác CED. b) AE2 lớn hơn AB nhân AC. c) 4AB nhân AC bằng 4 bình phương của AI trừ bình phương của DE. d) Đường trung trực của BC đi qua điểm E. Hãy cùng thử sức với các bài toán thú vị khác trong đề, như bài toán về tổng lũy thừa của a, b, c hay bài toán tìm giá trị lớn nhất của biểu thức Q = abc khi đã biết tổng nghịch đảo của a, b, c. Chắc chắn rằng đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa sẽ đem đến cho các em những trải nghiệm học tập thú vị và bổ ích!
Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2016-2017 của phòng GD&ĐT Tam Dương - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu trong đề giao lưu HSG Toán lớp 8 năm 2016-2017 phòng GD&ĐT Tam Dương - Vĩnh Phúc: - Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. Chứng minh rằng DE + DF = 2AM. - Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh rằng N là trung điểm của EF. - Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? - Cho hai đa thức A = n^6 + 10n^4 + n^3 + 98n - 6n^5 - 26 và B = 1 + n^3 - n. Chứng minh với mọi số nguyên n, thương của phép chia A cho B là bội số của 6. Hy vọng đề giao lưu này sẽ giúp các em học sinh lớp 8 củng cố kiến thức và chuẩn bị tốt cho kỳ thi HSG sắp tới. Chúc các em học tốt!
Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Chí Linh - Hải Dương Đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Chí Linh - Hải Dương Chào quý thầy cô và các em học sinh lớp 8, hôm nay Sytu xin giới thiệu đến bạn đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 từ phòng GD&ĐT Chí Linh - Hải Dương. Đề thi này bao gồm đề bài, đáp án và lời giải chi tiết cho các em ôn tập. Dưới đây là một số câu hỏi đặc biệt trong đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 phòng GD&ĐT Chí Linh - Hải Dương: Đề bài: Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. Đề bài: Cho tam giác ABC vuông tại A (AB > AC). Kẻ đường cao AH. a) Chứng minh rằng AB2/AC2 = BH/CH. b) Kẻ AD là tia phân giác của góc BAH (D thuộc BH). Chứng minh rằng: DH.DC = BD.HC. c) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh rằng CE // AD. Đề bài: Cho hai số x, y thỏa mãn x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức: M = x3 + y3. Đề giao lưu HSG Toán lớp 8 năm 2016 - 2017 từ phòng GD&ĐT Chí Linh - Hải Dương chắc chắn sẽ giúp các em ôn tập và nâng cao kiến thức Toán của mình. Chúc các em học tốt!
Đề khảo sát HSG lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Ý Yên Nam Định
Nội dung Đề khảo sát HSG lớp 8 môn Toán năm 2015 2016 phòng GD ĐT Ý Yên Nam Định Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 8 môn Toán năm 2015-2016 Phòng GD ĐT Ý Yên Nam Định Đề khảo sát HSG lớp 8 môn Toán năm 2015-2016 Phòng GD ĐT Ý Yên Nam Định Chào đón quý thầy cô và các em học sinh lớp 8, Sytu xin giới thiệu đến bạn đề khảo sát HSG Toán lớp 8 năm 2015-2016 của phòng GD&ĐT Ý Yên, Nam Định. Đề thi bao gồm đầy đủ đáp án, lời giải và hướng dẫn chấm điểm. Một trong các câu hỏi trong đề khảo sát Toán lớp 8 năm 2015-2016 phòng GD&ĐT Ý Yên, Nam Định là: 1) Cho hình vuông ABCD có cạnh bằng a, biết hai đường chéo cắt nhau tại O. Lấy điểm I thuộc cạnh AB, điểm M thuộc cạnh BC sao cho IOM = 90 độ (I và M không trùng với các đỉnh của hình vuông). Gọi N là giao điểm của AM và CD, K là giao điểm của OM và BN. Hãy thực hiện các yêu cầu sau: - Chứng minh ΔBIO = ΔCMO và tính diện tích tứ giác BIOM theo a. - Chứng minh BKM = BCO. - Chứng minh 1/CD^2 = 1/AM^2 + 1/AN^2. 2) Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Tính giá trị biểu thức AB/AC + AD/AE. 3) Tính giá trị của biểu thức P biết x, y thỏa mãn đẳng thức. Hãy thử sức và giải đề khảo sát này để nâng cao kiến thức Toán của mình. Chúc các em thành công!