Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 8 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 8 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Gieo hai con xúc xắc cân đối, đồng chất và giống hệt nhau. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc này trong cùng một lần gieo là số lớn hơn 8 2. Tìm tất cả số nguyên tố p, q sao cho A 2 2 p pq q 3 là bình phương của một số tự nhiên. + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. Gọi M, N lần lượt là trung điểm của BC, AC; gọi I, P lần lượt là điểm đối xứng của H qua D và M. a) Chứng minh rằng tứ giác BIPC là hình thang cân. b) Trên đoạn thẳng AP lấy điểm O sao cho OP = OC. Gọi G là giao điểm của OH và AM. Chứng minh ba điểm B, G, N thẳng hàng. c) Gọi Q là giao điểm của AH và EF. Chứng minh rằng 2 AQ DB DC AD HQ. + Tìm đa thức f x biết f x chia cho x 3 dư 5 f x chia cho x 5 dư 7 f x chia cho x 3 5 được thương là 2x và còn dư.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olimpic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội
Nội dung Đề thi Olimpic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olimpic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Quốc Oai - Hà Nội Đề thi Olimpic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Quốc Oai - Hà Nội Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề thi Olimpic Toán lớp 8 năm 2020 - 2021 từ phòng GD&ĐT Quốc Oai - Hà Nội. Hãy cùng nhau vào bài thi và thách thức khả năng toán học của mình! Trích dẫn một số câu hỏi trong đề thi: + Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh rằng ab - a - b + 1 chia hết cho 48. + Câu 2: Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Câu 3: Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Hãy tính các tỷ số liên quan đến tam giác. Hãy tự tin và thử sức với đề thi Olimpic Toán lớp 8 năm 2020 - 2021, chắc chắn rằng sẽ có những trải nghiệm toán học thú vị và bổ ích!
Đề thi Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài cho kỳ thi này là 90 phút. Kỳ thi sẽ diễn ra vào ngày 09 tháng 04 năm 2021.
Đề thi HSG huyện lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa
Nội dung Đề thi HSG huyện lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT Hà Trung Thanh Hóa Vào ngày Thứ Sáu, 09 tháng 04 năm 2021, Phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa đã tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 8 cấp huyện trong năm học 2020-2021. Đề thi Học Sinh Giỏi huyện môn Toán lớp 8 năm 2020-2021 của phòng GD&ĐT Hà Trung - Thanh Hóa bao gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Sau đây là một số câu hỏi trích dẫn từ đề thi HSG huyện Toán lớp 8 năm 2020-2021 phòng GD&ĐT Hà Trung - Thanh Hóa: Câu 1: Trong tam giác đều ABC, gọi O là trung điểm của cạnh BC. Chúng ta lấy các điểm di động M trên cạnh AB và N trên cạnh AC sao cho góc MON = 60 độ. Hãy chứng minh rằng: OMB đồng dạng với ONC, và suy ra tích BM.CN không đổi. Các tia MO, NO là tia phân giác của góc BMN và CNM. Chu vi tam giác AMN không đổi. Câu 2: Xác định đa thức f(x) biết: f(x) chia hết cho x - 1 dư 4; chia hết cho x + 2 dư 1, và chia cho x^2 + x - 2 được thương là 5x. Câu 3: Tìm số tự nhiên k sao cho k số chính phương. Đề thi này không chỉ giúp học sinh rèn luyện kiến thức mà còn khuyến khích sự sáng tạo và tư duy logic trong việc giải quyết các bài toán toán học.
Đề thi HSG lớp 8 môn Toán năm 2020 2021 trường THCS Trung Nguyên Vĩnh Phúc
Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 trường THCS Trung Nguyên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2020 - 2021 trường THCS Trung Nguyên Vĩnh Phúc Đề thi HSG Toán lớp 8 năm 2020 - 2021 trường THCS Trung Nguyên Vĩnh Phúc Ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2020 - 2021. Đề thi HSG Toán lớp 8 năm 2020 - 2021 của trường THCS Trung Nguyên - Vĩnh Phúc bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề thi có đáp án và lời giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết của bài toán. Đề thi HSG Toán lớp 8 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc có những câu hỏi đa dạng, đòi hỏi học sinh phải có kiến thức sâu rộng và khả năng suy luận logic tốt. Ví dụ như một bài toán về các số nguyên thỏa mãn điều kiện chia hết cho 3, hay bài toán về việc chia vận động viên thành hai nhóm sao cho một trong hai nhóm luôn có cặp vận động viên có hiệu số giống với số của người trong nhóm đó. Thông qua đề thi này, học sinh được thách thức tư duy, logic và khả năng giải quyết vấn đề. Đồng thời, đề thi cũng giúp học sinh rèn luyện kỹ năng giải toán một cách chính xác và logic.