Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cụm trường lần 1 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An

Nội dung Đề HSG cụm trường lần 1 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An Bản PDF - Nội dung bài viết Đề HSG cụm trường lần 1 Toán lớp 8 năm 2022 - 2023 Yên Thành, Nghệ An Đề HSG cụm trường lần 1 Toán lớp 8 năm 2022 - 2023 Yên Thành, Nghệ An Chúng tôi xin gửi đến các thầy cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi cụm trường lần 1 môn Toán cho năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi trong đề thi bao gồm: Cho hình vuông ABCD, có độ dài mỗi cạnh bằng a. M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc với AB và MF vuông góc với AD. a) Chứng minh rằng DE = CF. b) Chứng minh rằng ba đường thẳng DE, BF, CM đồng quy. c) Xác định vị trí của điểm M để diện tích tứ giác AEMF đạt giá trị lớn nhất và tìm giá trị lớn nhất đó. Cho 17 điểm nằm trong mặt phẳng, không có 3 điểm nào thẳng hàng. Nối các điểm này bằng các đoạn thẳng và tô màu xanh, đỏ hoặc vàng. Chứng minh rằng tồn tại một tam giác có các cạnh cùng màu. Cho biểu thức \(3x^2 + 3x^2 + 3x^2\). Tìm điều kiện xác định và rút gọn biểu thức Q. Tìm số hữu tỉ x sao cho biểu thức \(2x^2 + 4x^2 + x\) có giá trị là một số nguyên dương. Đây là một số câu hỏi trong đề thi Toán lớp 8 HSG cụm trường lần 1 năm học 2022 - 2023 tại Yên Thành, Nghệ An. Hy vọng các em sẽ tự tin và thành công khi giải quyết các bài toán này. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lương Tài - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lương Tài – Bắc Ninh : + Cho đa thức 2 f x ax bx c với abc là các số hữu tỉ. Biết rằng f f f (0) (1) (2) có giá trị nguyên. Chứng minh rằng 2 2 a b có giá trị nguyên. + Cho a, b là hai số nguyên phân biệt lớn hơn 1 thỏa mãn 2 a b 2 2 là lũy thừa của một số nguyên tố khác 13 và 2 b a 2 2 chia hết cho 2 a b 2 2. Chứng minh 2 3 a là số chính phương. + Cho tam giác ABC có B 2C; trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) ∆ABM là tam giác cân và ABC 2AKC b) MA.KN = MN.KA; c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Lê Quý Đôn - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Lê Quý Đôn, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Lê Quý Đôn – Bắc Giang : + Cho các số thực a b thỏa mãn: 2 2 a b ab a b 1 0. Tính giá trị của biểu thức 3 4 Ma b 3 2 2022. + Cho a và b là các số tự nhiên thoả mãn 2 2 2 3 aa bb. Chứng minh rằng: a b và 221 a b là các số chính phương. + Cho xyz là các số thực thỏa mãn điều kiện 2 2 2 3 1011 2 x y yz z. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Qxyz.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm (20 câu – 06 điểm) kết hợp 70% tự luận (04 câu – 14 điểm), thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Chọn đáp án đúng nhất: Cho hai số thực x y thỏa mãn 2 2 2 x y x y xy 2 4 6 1. Giá trị của biểu thức Axy 2022 2023 bằng? + Tam giác ABC vuông tại A có AC = 8 cm, BC = 10 cm. Tia phân giác của góc BAC cắt cạnh BC tại D. Tỉ số diện tích của tam giác ABD và tam giác ACD là? + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh BC lấy N (0 < NC < NB), đường thẳng vuông góc với ON tại O cắt AB tại M. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh ∆MON vuông cân. 2. Chứng minh MN // BE. 3. Gọi H là giao điểm của KC và BD. Chứng minh: OB NC CH OH NB KH.