Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 1 (HK1) lớp 8 môn Toán năm 2021 2022 trường THCS Phúc Đồng Hà Nội

Nội dung Đề kiểm tra giữa học kì 1 (HK1) lớp 8 môn Toán năm 2021 2022 trường THCS Phúc Đồng Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra giữa học kì 1 Toán lớp 8 trường THCS Phúc Đồng Hà Nội năm học 2021 - 2022Mục tiêu của đề kiểm traMa trận đề kiểm traBảng đặc tả và hướng dẫn chấm điểm Đề kiểm tra giữa học kì 1 Toán lớp 8 trường THCS Phúc Đồng Hà Nội năm học 2021 - 2022 Đề kiểm tra giữa kì 1 môn Toán lớp 8 năm học 2021 - 2022 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội được thiết kế với hình thức trắc nghiệm và tự luận. Bài kiểm tra bao gồm 08 câu trắc nghiệm chiếm 20% tổng số điểm và 05 câu tự luận chiếm 80% tổng số điểm. Thời gian làm bài là 90 phút, kỳ thi diễn ra vào ngày 12 tháng 11 năm 2021, và đề thi sẽ có đáp án trắc nghiệm và lời giải chi tiết tự luận. Mục tiêu của đề kiểm tra 1. Kiến thức: Đại số: Kiểm tra học sinh về phép nhân đa thức, các hằng đẳng thức quan trọng, phân tích và chia đa thức thành nhân tử. Hình học: Kiểm tra kiến thức về các loại hình học cơ bản như tứ giác, hình thang, đường trung bình, hình bình hành,... 2. Năng lực: Năng lực chung: Tính toán, logic, nghiên cứu và giải quyết vấn đề. Năng lực chuyên biệt: Sử dụng ngôn ngữ toán học, giải quyết vấn đề thông qua môn Toán. 3. Phẩm chất: Chăm chỉ, trung thực, yêu thích môn học. Ma trận đề kiểm tra 1. Phép nhân và chia đa thức. 2. Tứ giác. Bảng đặc tả và hướng dẫn chấm điểm Đề kiểm tra sẽ đưa ra các câu hỏi liên quan đến kiến thức và năng lực mà học sinh cần phải làm chủ trong môn Toán lớp 8. Các câu hỏi trắc nghiệm và tự luận sẽ giúp học sinh thể hiện khả năng tính toán, logic cũng như khả năng giải quyết vấn đề thông qua ngôn ngữ toán học. Các giáo viên chấm thi sẽ dựa vào bảng đặc tả và hướng dẫn chấm điểm để đánh giá hiệu quả của học sinh trong bài kiểm tra này.

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kỳ 1 Toán 8 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá chất lượng giữa học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc 100% tự luận với 05 bài toán, thời gian học sinh làm bài 90 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Ba ngày 01 tháng 11 năm 2022. Trích dẫn Đề giữa học kỳ 1 Toán 8 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Cho bình bình hành ABCD. Gọi I là trung điểm của đoạn thẳng AB, K là trung điểm của đoạn thẳng CD. a) Chứng minh tứ giác AICK là hình bình hành b) Gọi E và F lần lượt là giao điểm của đường thẳng BD với đường thẳng AK và CI. Chứng minh 1 2 EK CF c) Các đường thẳng AF và BC cắt nhau tại điểm M, các đường thẳng CE và AD cắt nhau tại điểm N. Gọi O là giao điểm của đường thẳng AC và BD. Chứng minh ba điểm M O N là ba điểm thẳng hàng. + Giữa hai địa điểm A và B có vướng một cây cổ thụ. Biết rằng DC 90m. Hỏi khoảng cách giữa hai địa điểm A và B bằng bao nhiêu mét? Vì sao? (Học sinh không phải vẽ lại hình). + Cho biểu thức 2 2 P x y xy x y 9 2 6 6 6 2022 với x y là các số nguyên. Tìm giá trị nhỏ nhất của biểu thức P.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường Lê Thánh Tông - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường Lê Thánh Tông – TP HCM : + Tính giá trị của biểu thức. + Một cửa hàng thời trang có chương trình giảm giá 20% cho tất cả các sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiết của cửa hàng thì được giảm giá thêm 10% trên giá đã giảm. a) Chị Nga là khách hàng thân thiết của cửa hàng, chị đã đến cửa hàng mua một chiếc váy có giá niêm yết 800 ngàn đồng. Hỏi chị Nga phải trả bao nhiêu tiền cho chiếc váy đó? b) Ông Đồ cũng là một khách hàng thân thiết của cửa hàng, ông đã mua một chiếc va li và đã phải trả số tiền là 864 ngàn đồng. Hỏi giá ban đầu của chiếc va li đó là bao nhiêu? + Cho tam giác ABC vuông cân tại A. Lấy điểm M bất kỳ thuộc cạnh BC (M khác B và C). Gọi E và F lần lượt là hình chiếu của M trên AB và AC. a) Chứng minh AM = EF. b) Gọi I, K lần lượt là trung điểm của MB, MC. Chứng minh tứ giác EIKF là hình thang vuông. c) Một con rô bốt thu gom rác xuất phát từ vị trí A di chuyển dọc theo các cạnh của tứ giác AEMF một lượt rồi trở về A. Chứng minh rằng độ dài quãng đường con rô bốt di chuyển không phụ thuộc vào vị trí của điểm M trên cạnh BC. Tính quãng đường đó biết độ dài cạnh BC = 20 mét.
Đề giữa học kì 1 Toán 8 năm 2022 - 2023 trường THCS Phúc Xá - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Phúc Xá, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc đề tự luận 100%, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 8 năm 2022 – 2023 trường THCS Phúc Xá – Hà Nội : + Cho tam giác ABC có BC = 4cm, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. 1/ Tính độ dài ED 2/ Chứng minh DE // IK 3/ Chứng minh tứ giác EDKI là hình bình hành. + Để đo khoảng cách giữa hai điểm B và C bị ngăn bởi một cái hồ nước, người ta đóng các cọc ở vị trí A, B, C, M, N như hình vẽ. Người ta đo được MN = 550m. Tính khoảng cách BC? + Phân tích các da thức sau thành nhân tử.
Đề giữa học kỳ 1 Toán 8 năm 2022 - 2023 trường THCS Ngô Sĩ Liên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 1 Toán 8 năm 2022 – 2023 trường THCS Ngô Sĩ Liên – Hà Nội : + Cho hình vẽ bên. a) Chứng minh tứ giác ABEF là hình thang vuông. b) Biết AB = 16 cm, CD = 12 cm. Tính EF. + Cho tam giác ABC cân tại A, lấy H là trung điểm của cạnh BC, D là trung điểm của cạnh AC. a) Chứng minh DH // AB. b) Trên tia đối của tia HD lấy điểm E sao cho HD = HE. Chứng minh tứ giác BDCE là hình bình hành và AD = EB. c) Thêm điều kiện gì của tam giác ABC để tứ giác ABHD là hình thang cân? d) Gọi G là giao điểm của AH và BD, I là điểm đối xứng với G qua BC. Chứng minh ba điểm E, I, C thẳng hàng và EC = 3EI. + Cho x + 2y = 3. Tìm giá trị nhỏ nhất của biểu thức S = x2 + y2.