Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề bất đẳng thức và cực trị hình học ôn thi vào lớp 10

Tài liệu gồm 41 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức và cực trị hình học, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỬ DỤNG CÁC TÍNH CHẤT HÌNH HỌC ĐƠN GIẢN 1) Bất đẳng thức liên hệ giữa độ dài các cạnh một tam giác: AB AC BC AB BC. Chú ý rằng: a. Với 3 điểm A B C bất kỳ ta luôn có: AB BC AC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. b) Với 3 điểm A B C bất kỳ ta luôn có: AB AC BC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. c) Cho hai điểm AB nằm về một phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M0). MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M1). d) Cho hai điểm AB nằm về hai phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M0) MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M1). e) Trong quá trình giải toán ta cần lưu ý tính chất: Đường vuông góc luôn nhỏ hơn hoặc bằng đường xiên. Trong hình vẽ: AH AB M1. 2) Trong một đường tròn, đường kính là dây cung lớn nhất. 3) Cho đường tròn O R và một điểm A. Đường thẳng AO cắt đường tròn tại hai điểm 1 2 M M. Giả sử AM AM 1 2. Khi đó với mọi điểm M nằm trên đường tròn ta luôn có: AM AM AM 1 2. SỬ DỤNG BẤT ĐẲNG THỨC CỔ ĐIỂN ĐỂ GIẢI BÀI TOÁN CỰC TRỊ Ở cấp THCS, các em học sinh được làm quen với bất đẳng thức Cauchy dạng 2 số hoặc 3 số. Để giải quyết tốt các bài toán hình học: Ta cần nắm chắc một số kết quả quan trọng sau: Trước hết ta cần nắm được các kết quả cơ bản sau: 1. Cho các số thực dương ab 2 4 2 a b a b ab ab a b ab. Dấu bằng xảy ra khi và chỉ khi a b. 2. Cho các số thực dương a b c a b c a b c abc abc. Dấu bằng xảy ra khi và chỉ khi a b c. Ngoài ra các em học sinh cần nắm chắc các công thức về diện tích tam giác liên hệ độ dài các cạnh và góc như: Diện tích hình chữ nhật; Diện tích hình thang; Diện tích hình vuông.

Nguồn: toanmath.com

Đọc Sách

Các bài toán sử dụng nguyên lý cực hạn
Nội dung Các bài toán sử dụng nguyên lý cực hạn Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý cực hạn trong giải bài toán Các ứng dụng của nguyên lý cực hạn trong giải bài toán Tài liệu bao gồm 20 trang và được trích dẫn từ một cuốn sách nổi tiếng về nguyên lý cực hạn. Trong cuốn sách, nguyên lý cực hạn được áp dụng để giải quyết các bài toán phức tạp trong đời sống và công việc hàng ngày. Việc áp dụng nguyên lý cực hạn trong giải quyết bài toán giúp tối ưu hóa kết quả và đưa ra những giải pháp hiệu quả nhất.
Các bài toán về nguyên lý Dirichlet trong số học
Nội dung Các bài toán về nguyên lý Dirichlet trong số học Bản PDF - Nội dung bài viết Các bài toán về nguyên lý Dirichlet trong số học Các bài toán về nguyên lý Dirichlet trong số học Được trích đoạn từ cuốn sách "Các bài toán về nguyên lý Dirichlet trong số học", tài liệu này bao gồm 26 trang các bài toán liên quan đến nguyên lý Dirichlet trong số học. Những bài toán này thường liên quan đến việc tìm kiếm nguyên hàm của một hàm số với điều kiện ban đầu cho trước, và có ứng dụng rất rộng rãi trong lĩnh vực toán học, khoa học máy tính và các ngành liên quan khác. Cuốn sách này cung cấp cái nhìn tổng quan về nguyên lý Dirichlet và giúp độc giả hiểu rõ hơn về cách áp dụng nguyên lý này vào các bài toán cụ thể.
Các bài toán về phần nguyên trong số học
Nội dung Các bài toán về phần nguyên trong số học Bản PDF - Nội dung bài viết Các bài toán về phần nguyên trong số học Các bài toán về phần nguyên trong số học Tài liệu này bao gồm 33 trang và được trích đoạn từ cuốn sách về các bài toán liên quan đến phần nguyên trong số học. Những vấn đề này thường liên quan đến việc làm tròn số, phân tích số nguyên, và tính toán các phép toán cơ bản trên số nguyên. Qua việc nghiên cứu tài liệu này, người đọc sẽ hiểu rõ hơn về cách thức giải quyết các vấn đề liên quan đến phần nguyên và áp dụng chúng vào thực tế.
Các bài toán về phương trình nghiệm nguyên
Nội dung Các bài toán về phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Các bài toán về phương trình nghiệm nguyên Các bài toán về phương trình nghiệm nguyên Tài liệu này bao gồm 405 trang và được trích từ một cuốn sách chuyên về các bài toán liên quan đến phương trình nghiệm nguyên. Trong tài liệu này, các bài toán được trình bày một cách chi tiết và cụ thể, giúp người đọc dễ hiểu và áp dụng vào thực tế. Bạn sẽ tìm thấy nhiều cách tiếp cận và giải quyet cho các bài toán khó khăn trong lĩnh vực này, từ cơ bản đến nâng cao. Việc tìm hiểu và áp dụng kiến thức từ tài liệu này sẽ giúp bạn nâng cao kỹ năng giải quyet các bài toán liên quan đến phương trình nghiệm nguyên một cách hiệu quả.