Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Hương Trà - TT Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hương Trà, tỉnh Thừa Thiên Huế; đề thi gồm 01 trang với 05 bài toán hình thức 100% tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Hương Trà – TT Huế : + Cho phương trình: x2 – 2mx + m2 – m – 6 = 0 (m là tham số). Với giá trị nào của m thì phương trình có hai nghiệm x1 và x2 sao cho |x1| + |x2| = 8. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn (x + y)3 = (x – y – 6)2. Cho tam giác ABC vuông tại A có phân giác AD. Gọi M, N lần lượt là hình chiếu của B, C lên đường thẳng AD. Chứng minh rằng: 2AD < BM + CN. + Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. a) Chứng minh tam giác EMF là tam giác cân. b) Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng. c) Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Tân Kỳ - Nghệ An
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Hai ngày 18 tháng 10 năm 2021. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An : + a) Chứng minh rằng với mọi số tự nhiên n thì n3 + 11n chia hết cho 6. b) Giải phương trình c) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 – y2 = 4x + 3. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường thẳng vuông góc với BC tại B cắt AC tại D. a) Chứng minh rằng: AH2 = HB.HC và BH.BC = AD.AC. b) Chứng minh c) Cho góc nhọn a và sin a = 2/3. Tính P. + Cho 7 điểm phân biệt nằm bên trong hình vuông ABCD có cạnh bằng 10. Chứng minh rằng có ít nhất một điểm trong hình vuông đã cho (có thể nằm trên cạnh của hình vuông) sao cho khoảng cách từ nó đến 7 điểm đã cho đều lớn hơn 2,5.
Đề thi HSG Toán 9 cấp thị xã năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
Đề thi HSG Toán 9 cấp thị xã năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG Toán 9 cấp thành phố năm 2021 - 2022 phòng GDĐT TP Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán 9 cấp thành phố năm học 2021 – 2022 phòng GD&ĐT thành phố Thanh Hóa; đề thi được biên soạn theo hình thức 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 09 năm 2021.
Đề thi HSG Toán cấp huyện năm 2021 - 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán cấp huyện năm học 2021 – 2022 phòng GD&ĐT huyện Kim Thành, tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 05 tháng 10 năm 2021.