Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát môn Toán ôn thi tuyển sinh vào lớp 10 lần 2 năm học 2021 – 2022 trường THCS & THPT Nguyễn Tất Thành, thành phố Hà Nội; đề thi gồm 08 câu trả lời ngắn (viết đáp số của bài toán, không trình bày lời giải) và 03 câu tự luận (trình bày chi tiết lời giải), thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành – Hà Nội : + Một chiếc máy bay đang cất cánh từ mặt đất với vận tốc 600 km/h. Biết rằng đường bay là đường thẳng tạo với phương nằm ngang một góc 30°. Hỏi sau 0,5 phút máy bay lên cao được bao nhiêu ki-lô-mét theo phương thẳng đứng? + Một ca nô xuôi dòng từ bến A đến bến B, cách nhau 30 km. Khi đến bến B, ca nô lập tức quay trở về bến A, cả đi lẫn về hết 2 giờ 45 phút. Tính vận tốc của ca nô biết vận tốc của dòng nước là 2km/h. + Cho hình thang cân ABCD có đáy bé AB = 2cm, đáy lớn CD = 8 cm và ngoại tiếp hình tròn tâm O bán kính r. Tính bán kính r.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Hưng Yên
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Hưng Yên. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Hưng Yên, kỳ thi được diễn ra vào ngày 05/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Hưng Yên : + Tính chiều cao của đài kiểm soát không lưu Nội Bài. Biết bóng của đài kiểm soát được chiếu bởi ánh sáng mặt trời xuống đất khoảng 200 m và góc tạo bởi tia sáng với mặt đất là 25’24o (kết quả làm tròn đến hàng đơn vị). [ads] + Cổng vào một ngôi biệt thự có hình dạng là một parabol được biểu diễn bởi đồ thị của hàm số y = -x^2. Biết khoảng cách giữa hai chân cổng là 4 m. Một chiếc ô tô tải có thùng xe là một hình hộp chữ nhật có chiều rộng là 2,4 m. Hỏi chiều cao lớn nhất có thể của ô tô là bao nhiêu để ô tô có thể đi qua cổng? + Tâm O của đường tròn (O;5 cm) cách đường thẳng d một khoảng bằng 6 cm. Tìm số điểm chung của đường thẳng d và đường tròn (O;5 cm). A. Có ít nhất một điểm chung. B. Có hai điểm chung phân biệt. C. Có một điểm chung duy nhất. D. Không có điểm chung.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Khánh Hòa
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Khánh Hòa. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Khánh Hòa, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Khánh Hòa : + Trung tâm thương mại VC của thành phố NT có 100 gian hàng. Nếu mỗi gian hàng của Trung tâm thương mại VC cho thuê với giá 100.000.000 đồng (một trăm triệu đồng) một năm thì tất cả các gian hàng đều được thuê hết. Biết rằng, cứ mỗi lần tăng giá 5% tiền thuê mỗi gian hàng một năm thì Trung tâm thương mại VC có thêm 2 gian hàng trống. Hỏi người quản lý phải quyết định giá thuê mỗi gian hàng là bao nhiêu một năm để doanh thu của Trung tâm thương mại VC từ tiền cho thuê gian hàng trong năm là lớn nhất? [ads] + Trên mặt phẳng tọa độ Oxy, cho điểm T(−2;-2), parabol (P) có phương trình y = -8x^2 và đường thẳng d có phương trình y = 2x − 6. a) ðiểm T có thuộc đường thẳng d không? b) Xác định tọa độ giao điểm của đường thẳng d và parabol (P). + Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A) bán kính AH. Từ đỉnh B kẻ tiếp tuyến BI với (A) cắt đường thẳng AC tại D (điểm I là tiếp điểm, I và H không trùng nhau). a) Chứng minh AHBI là tứ giác nội tiếp. b) Cho AB = 4cm, AC = 3cm. Tính AI. c) Gọi HK là đường kính của (A). Chứng minh rằng BC = BI + DK.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Sơn La
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Sơn La. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Sơn La, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Sơn La : + Trong kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020, số thí sinh vào trường THPT chuyên bằng 2/3, số thí sinh thi vào trường PTDT Nội trú. Biết rằng tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi có đúng 24 thí sinh. Hỏi số thí sinh vào mỗi trường bằng bao nhiêu? [ads] + Cho đường tròn (O) đường kính AB = 2R và C là một điểm nằm trên đường tròn sao cho CA > CB. Gọi I là trung điểm của OA, vẽ đường thẳng d vuông góc với AB tại I, d cắt tia BC tại M và cắt đoạn AC tại P, AM cắt đường tròn (O) tại điểm thứ hai K. a) Chứng minh tứ giác BCPI nội tiếp được trong một đường tròn. b) Chứng minh ba điểm B, P, K thẳng hàng. c) Các tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại Q, biết BC = R. Tính độ dài BK và diện tích tứ giác QAIM theo R. + Cho parabol (P):y = x^2 và đường thẳng y = (2m – 1)x + m^2 + 2m (m là tham số, m thuộc R). a) Xác định tất cả các giá trị của m để đường thẳng (d) đi qua điểm I(1;3). b) Tìm m để parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt A, B. Gọi x1, x2 là hoành độ hai điểm A, B; tìm m sao cho x1^2 + x2^2 + 6x1x2 = 2020.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Thái Bình
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Thái Bình. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Thái Bình, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Thái Bình : + Một mảnh vườn hình chữ nhật có diện tích 150 m2. Biết rằng, chiều dài mảnh vườn hơn chiều rộng mảnh vườn là 5 m. Tính chiều rộng mảnh vườn. + Giải hệ phương trình: 4x + y = 3 và 2x – y = 1 (không sử dụng máy tính cầm tay). + Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H (H nằm giữa A và O, H khác A và O). Lấy điểm G thuộc CH (G khác C và H), tia AG cắt đường tròn tại E khác A. a. Chứng minh tứ giác BEGH là tứ giác nội tiếp. b. Gọi K là giao điểm của hai đường thẳng BE và CD. Chứng minh: KC.KD = KE.KB. c. Đoạn thẳng AK cắt đường tròn O tại F khác A. Chứng minh G là tâm đường tròn nội tiếp tam giác HEF. d. Gọi M, N lần lượt là hình chiếu vuông góc của A và B lên đường thẳng EF. Chứng minh HE + HF = MN.