Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập tự luận chuyên đề vectơ - Trần Đình Thiên

Tài liệu gồm 18 trang tóm tắt lý thuyết, phân loại các dạng toán và tổng hợp các bài toán tự luận chủ đề vectơ, tích vô hướng của hai vectơ và ứng dụng. Chương 1 . Vectơ I. Vectơ + Vấn đề 1. Khái niệm vectơ + Vấn đề 2. Chứng minh đẳng thức vectơ – phân tích vectơ Để chứng minh một đẳng thức vectơ hoặc phân tích một vectơ theo hai vectơ không cùng phương, ta thường sử dụng: – Qui tắc ba điểm để phân tích các vectơ – Các hệ thức thường dùng như: Hệ thức trung điểm, hệ thức trọng tâm tam giác – Tính chất của các hình Vấn đề 3. Xác định một điểm thoả mãn đẳng thức vectơ Để xác định một điểm M ta cần phải chỉ rõ vị trí của điểm đó đối với hình vẽ. Thông thường ta biến đổi đẳng thức vectơ đã cho về dạng vt OM = vt a, trong đó O và vt a đã được xác định. Ta thường sử dụng các tính chất về: – Điểm chia đoạn thẳng theo tỉ số k – Hình bình hành – Trung điểm của đoạn thẳng [ads] Vấn đề 4. Chứng minh ba điểm thẳng hàng – hai điểm trùng nhau Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh ba điểm đó thoả mãn đẳng thức vt AB = k.vt AC, với k khác 0 Để chứng minh hai điểm M, N trùng nhau ta chứng minh chúng thoả mãn đẳng thức vt OM = vt ON, với O là một điểm nào đó hoặc vt MN = vt 0 Vấn đề 5. Tập hợp điểm thoả mãn đẳng thức vectơ Để tìm tập hợp điểm M thoả mãn một đẳng thức vectơ ta biến đổi đẳng thức vectơ đó để đưa về các tập hợp điểm cơ bản đã biết. Chẳng hạn: – Tập hợp các điểm cách đều hai đầu mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó – Tập hợp các điểm cách một điểm cố định một khoảng không đổi đường tròn có tâm là điểm cố định và bán kính là khoảng không đổi II. Toạ độ Vấn đề 1. Toạ độ trên trục Vấn đề 2. Toạ độ trên hệ trục Chương 2 . Tích vô hướng của hai vectơ Vấn đề 1. Tính tích vô hướng của 2 vectơ Vấn đề 2. Chứng minh một đẳng thức vectơ có liên quan đến tích vô hướng hay đẳng thức các độ dài Phương pháp: – Ta sử dụng các phép toán về vectơ và các tính chất của tích vô hướng – Về độ dài ta chú ý AB^2 = vt AB^2 Vấn đề 3. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) xác định hình dạng của tam giác ABC Vấn đề 4. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) xác định trọng tâm G, trực tâm H và tâm I của đường tròn ngoại tiếp tam giác ABC Vấn đề 5. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) xác định tâm J của đường tròn nội tiếp tam giác ABC Vấn đề 6. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3) gọi A’ là chân đường vuông góc kẻ từ A lên BC .Tìm A’ Vấn đề 7. Trong mp Oxy cho tam giác ABC với A(x1; y1), B(x2; y2) và C(x3; y3), tính cosA

Nguồn: toanmath.com

Đọc Sách

Bài tập tổ hợp - xác suất vận dụng cao có lời giải chi tiết
Tài liệu gồm 101 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán học Bắc Trung Nam, tuyển chọn các bài tập tổ hợp – xác xuất vận dụng cao có lời giải chi tiết, tài liệu phù hợp với đối tượng học sinh khá – giỏi rèn luyện để nâng cao kiến thức tổ hợp và xác suất (Đại số và Giải tích 11 chương 2), học sinh ôn thi học sinh giỏi Toán THPT, học sinh ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu bài tập tổ hợp – xác xuất vận dụng cao có lời giải chi tiết: PHẦN I . BÀI TẬP TRẮC NGHIỆM Dạng 1 . Các bài toán đếm – tính xác suất số các chữ số thỏa mãn điều kiện cho trước. + Loại 1. Liên quan đến tính chất chia hết. + Loại 2. Số lần xuất hiện của chữ số. + Loại 3. Liên quan đến vị trí. + Loại 4. Liên quan đến lớn hơn và nhỏ hơn. Dạng 2 . Các bài toán đếm số phương án tính xác suất liên quan đến người hoặc đồ vật. Dạng 3 . Các bài toán đếm số phương án tính xác suất liên quan đến đa giác. Dạng 4 . Các bài toán đếm – tính xác suất liên quan đến xếp chỗ và vị trí. [ads] PHẦN II . BÀI TẬP TỰ LUẬN Dạng 1 . Các bài toán đếm – tính xác suất số các chữ số thỏa mãn điều kiện cho trước. + Loại 1. Liên quan đến tính chất chia hết. + Loại 2. Số lần xuất hiện của chữ số. + Loại 3. Liên quan đến vị trí. + Loại 4. Liên quan đến lớn hơn và nhỏ hơn. Dạng 2 . Các bài toán đếm số phương án tính xác suất liên quan đến người hoặc đồ vật. Dạng 3 . Các bài toán đếm số phương án tính xác suất liên quan đến đa giác. Dạng 4 . Các bài toán đếm – tính xác suất liên quan đến xếp chỗ và vị trí.
Bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết
giới thiệu đến bạn đọc tài liệu bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết, đây là các bài toán hay được đóng góp bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC nhằm tạo nguồn đề tham khảo bổ ích để các em có thể rèn luyện nhiều hơn với các bài toán tổ hợp và xác suất ở mức độ khó và rất khó. Tài liệu phù hợp với các em học sinh khối 11 học nâng cao, các em học sinh lớp 12 ôn thi THPTQG môn Toán và các em học sinh ôn thi HSG Toán. Trích dẫn tài liệu bài tập trắc nghiệm tổ hợp và xác suất nâng cao có lời giải chi tiết : + Nhân ngày phụ nữ Việt Nam 20/10, các bạn nam lớp 10A đến cửa hàng hoa để mua hoa tặng các cô giáo dạy lớp mình. Cửa hàng hoa có bán ba loại hoa: hoa hồng, hoa cẩm chướng và hoa đồng tiền ( số hoa mỗi loại đều lớn hơn hoặc bằng 8). Nhóm 8 bạn nam vào cửa hàng và chọn 8 bông hoa. Hỏi các bạn nam có bao nhiêu cách chọn số lượng từng loại hoa? [ads] + Cho một lưới gồm các ô vuông kích thước 10 x 6 như hình vẽ sau đây. Một người đi từ A đến B theo quy tắc: chỉ đi trên cạnh của các ô vuông theo chiều từ trái qua phải hoặc từ dưới lên trên. Hỏi có bao nhiêu đường đi khác nhau để người đó đi từ A đến B đi qua điểm C? + Một chuồng có 3 con mèo trắng và 4 con mèo đen. Người ta bắt ngẫu nhiên lần lượt từng con ra khỏi chuồng cho đến khi nào bắt được 3 con mèo trắng mới thôi. Tính xác xuất để cần phải bắt ít nhất 5 con mèo.
Bài tập nhị thức Niu-tơn vận dụng cao - Nguyễn Minh Tuấn
giới thiệu đến thầy, cô và các em học sinh tài liệu bài tập nhị thức Niu-tơn vận dụng cao do bạn Nguyễn Minh Tuấn biên soạn, đây là dạng toán thường gặp không chỉ trong chương trình Đại số và Giải tích 11 mà còn bắt gặp trong đề thi THPT Quốc gia môn Toán. Các bài toán vận dụng cao về nhị thức Niu-tơn (Newton) thường được phát biểu dưới dạng các công thức cồng kềnh, khó nắm bắt nên gây nhiều khó khăn cho các em học sinh, thông qua tài liệu này, tác giả mong muốn giới thiệu đến các em những phương pháp hay và mạnh để giải quyết dạng toán này. Nội dung tài liệu : I. Công thức nhị thức Niu-tơn: Trình bày lý thuyết, công thức nhị thức Niu-tơn và các công thức cơ bản liên quan đến khai triển nhị thức Niu-tơn. II. Giới thiệu tam giác Pascal. III. Các dạng toán liên quan tới nhị thức Niu-tơn: Trình bày các dạng toán, phương pháp giải cùng các ví dụ minh họa với lời giải chi tiết về các bài toán liên quan đến nhị thức Niu-tơn. Các dạng toán bao gồm: 1. Bài toán khai triển nâng cao. 2. Bài toán hệ số lớn nhất. 3. Ứng dụng đạo hàm trong chứng minh đẳng thức tổ hợp. 4. Ứng dụng tích phân trong chứng minh đẳng thức tổ hợp. 5. Ứng dụng số phức chứng minh đẳng thức tổ hợp. 6. Đồng nhất hệ số 2 vế. IV. Các bài toán tổng hợp: Tổng hợp các bài toán tự luyện, có hướng dẫn giải và đáp số.
Bài tập trắc nghiệm hoán vị, chỉnh hợp, tổ hợp - Nguyễn Văn Đức
Tài liệu gồm 9 trang tuyển tập 86 bài tập trắc nghiệm chủ đề hoán vị, chỉnh hợp, tổ hợp, các bài tập được chia thành 3 dạng: A – Các bài toán đếm trong số học B – Các bài toán đếm trong hình học C – Ứng dụng: Tính giá trị biểu thức – Giải phương trình, bất phương trình [ads]