Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 - 2023 sở GDĐT Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 14 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Cho phương trình (m + 1)x3 + (3m − 1)x2 − x − 4m + 1 = 0 (với m là tham số). Tìm m để phương trình đã cho có 3 nghiệm phân biệt. + Cho 3 điểm phân biệt cố định A, B, C cùng nằm trên đường thẳng d (điểm B nằm giữa A và C), gọi I là trung điểm của đoạn thẳng BC. Đường tròn tâm O luôn đi qua hai điểm B và C (điểm O không thuộc d). Kẻ các tiếp tuyến AM,AN với đường tròn tâm O (M, N là các tiếp điểm). Đường thẳng MN cắt OA tại điểm H và cắt BC tại điểm K. 1. Chứng minh tứ giác OMNI nội tiếp và AH.OA = AN2. 2. Khi đường tròn tâm O thay đổi, chứng minh MN luôn đi qua điểm K cố định. 3. Tia AO cắt đường tròn tâm O tại hai điểm P, Q (điểm P nằm giữa A và O). Gọi D là trung điểm của đoạn thẳng HQ. Từ H kẻ đường thẳng vuông góc với MD và cắt đường thẳng MP tại E. Chứng minh P là trung điểm của ME. + Cho một bảng ô vuông kích thước 10 x 10 gồm 100 ô vuông đơn vị (cạnh bằng 1). 1. Điền vào mỗi ô vuông đơn vị một trong các số −1; 0; 1. Xét các tổng của tất cả các số đã điền trên mỗi hàng, mỗi cột và hai đường chéo của bảng đã cho. Hỏi các tổng đó có thể nhận bao nhiêu giá trị và chứng minh trong đó có hai tổng bằng nhau. 2. Điền vào mỗi ô vuông đơn vị một số nguyên dương không vượt quá 10 sao cho hai số ở hai ô chung cạnh hoặc chung đỉnh là hai số nguyên tố cùng nhau. Chứng minh trong bảng đã cho tồn tại một số được điền ít nhất 17 lần.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS năm 2021 – 2022 phòng GD&ĐT thành phố Sơn La; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2022.
Đề thi HSG Toán THCS năm 2021 - 2022 phòng GDĐT huyện Thuận Châu - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán THCS năm 2021 – 2022 phòng GD&ĐT huyện Thuận Châu – Sơn La.
Đề thi chọn HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Ba ngày 04 tháng 01 năm 2022. Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Sơn Hòa – Phú Yên : + Chứng minh rằng với mọi số tự nhiên n thì n2 + 12n + 2022 không thể là số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính AH, BH biết BC = 50 cm và AB/AC = 3/4. b) Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng: AH3 = BC.BD.CE. c) Giả sử BC = 2a là độ dài cố định. Hỏi tam giác vuông ABC có thêm điều kiện gì để BD2 + CE2 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất của BD2 + CE2. + Cho hai số dương a và b thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q = 1/a + 1/b.