Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 1 năm 2022 - 2023 trường THPT Lê Xoay - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán 10 lần 1 năm học 2022 – 2023 trường THPT Lê Xoay, tỉnh Vĩnh Phúc; đề thi mã đề 132 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề khảo sát Toán 10 lần 1 năm 2022 – 2023 trường THPT Lê Xoay – Vĩnh Phúc : + Trượt Zipline là một trò chơi đang rất được ưa chuộng. Để chơi trượt Zipline, người ta sẽ buộc một sợi dây cáp dài nối từ một điểm có vị trí cao hơn xuống một vị trí thấp hơn. Người chơi buộc phải mặc các trang thiết bị bảo vệ cơ thể. Một dây cáp Zipline được nối từ một tháp cao 28 feet (ft) xuống một chòi nghỉ có độ cao 11 ft so với mặt đất. Góc tạo bởi dây cáp lúc căng và cột thép là 85 (xem hình vẽ). Tính chiều dài của dây cáp lúc được căng và không có người trượt trên đó. Với quy ước 1 0 3 ft m làm tròn kết quả đến chữ số thập phân thứ nhất. + Khảo sát sở thích tập luyện thể thao của 44 học sinh lớp 10A, ta được 23 học sinh thích chơi môn cầu lông, 23 học sinh thích chơi môn bóng rổ, 20 học sinh thích chơi môn bóng chuyền. Có 2 em không thích môn nào và 6 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn (cầu lông, bóng rổ, bóng chuyền) là bao nhiêu? + Một cơ sở làm sản phẩm handmade có hai công nhân là Bình và Minh. Cơ sở sản xuất 2 loại sản phẩm I và II. Mỗi sản phẩm I bán lãi 600 nghìn đồng, mỗi sản phẩm II bán lãi 500 nghìn đồng. Để sản xuất được một sản phẩm I thì Bình phải làm việc trong 3 giờ, Minh phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Bình phải làm việc trong 2 giờ, Minh phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong tháng 8 Bình không thể làm việc quá 180 giờ và Minh không thể làm việc quá 220 giờ. Hai công nhân định dùng toàn bộ tiền lãi của tháng 8 để mua sách tặng trẻ em vùng cao. Mỗi thùng sách giá 3,9 triệu đồng. Số thùng sách nhiều nhất mà hai công nhân mua được bằng tiền lãi tháng 8 là A. 11 thùng. B. 10 thùng. C. 9 thùng. D. 8 thùng.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kỳ tháng 9 năm học 2017 2018 lớp 10 môn Toán trường THCS THPT Khai Minh TP. HCM
Nội dung Đề kiểm tra định kỳ tháng 9 năm học 2017 2018 lớp 10 môn Toán trường THCS THPT Khai Minh TP. HCM Bản PDF Đề kiểm tra định kỳ tháng 9 năm học 2017 – 2018 môn Toán lớp 10 trường THCS – THPT Khai Minh – TP. HCM gồm 8 bài toán tự luận, có lời giải chi tiết và thang điểm . Trích dẫn đề thi : + Giả sử ABC là một tam giác đã cho. Lập mệnh đề P ⇒ Q và Q ⇒ P rồi xét tính đúng sai của chúng, với: P: “Góc A bằng 90 độ” và Q: “BC^2 = AB^2 + AC^2” + Cho các tập hợp: A = [-5; 11] và B = (2; 18) Xác định các tập hợp: A ∪ B; A ∩ B; A \ B; B \ A và biểu diễn chúng lên trục số? + Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và giải thích mệnh đề phủ định đó đúng hay sai? a) ∃x ∈ R: x^2 = -5 b) ∀x ∈ R: x^2 + 2x + 8 = 0 [ads]
Đề ôn tập trắc nghiệm môn Toán trường THPT chuyên Lương Thế Vinh Đồng Nai
Nội dung Đề ôn tập trắc nghiệm môn Toán trường THPT chuyên Lương Thế Vinh Đồng Nai Bản PDF Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Nội dung đề gồm 2 chương: + Mệnh đề và tập hợp + Hàm số bậc nhất và hàm số bậc hai Trong đề có một số câu hỏi bằng Tiếng Anh được trích dẫn từ các đề thi quốc tế, đề ôn tập có đáp án . Trích dẫn đề thi : + Xét hai hàm số: f(x) = x^2 + 2bx + 1 và g(x) = 2a(x + b), ở đây x là biến số và các hằng số a và b là các số thực. Với mỗi cặp hằng số a và b có thể được xem như là một điểm (a,b) trong mặt phẳng toạ độ Oab. Gọi S là tập hợp các điểm (a,b) sao cho đồ thị của các hàm số y = f(x) và y = g(x) không có điểm chung (trong mặt phẳng toạ độ Oxy). Diện tích của S bằng (hoặc gần bằng): [ads] A. 1 B. 4 C. 4π D. π + Cho parabol y = ax^2 + bx + c có đỉnh tại (4,−5) và cắt trục hoành tại hai điểm có hoành độ trái dấu. Trong các số a, b, c, số nào dương? A Chỉ b B Chỉ a C Chỉ c D Chỉ a và b + Biết rằng đồ thị hàm số y = ax^2 + bx + c cắt trục hoành tại hai điểm phân biệt A(x1;0), B(x2;0) (x1, x2 > 0) sao cho OA = AB. Hệ thức liên hệ giữa a, b, c là? A. 2b^2 = 9ac B. b^2 = 9ac C. b = 9ac D. b^2 = 9(a+ c)
Đề kiểm tra chất lượng lần 1 lớp 10 môn Toán trường THPT Quảng Xương 4 Thanh Hóa
Nội dung Đề kiểm tra chất lượng lần 1 lớp 10 môn Toán trường THPT Quảng Xương 4 Thanh Hóa Bản PDF Đề kiểm tra chất lượng lần 1 môn Toán lớp 10 trường THPT Quảng Xương 4 – Thanh Hóa gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích dẫn đề thi : + Người ta làm một chiếc cổng hình parabol dạng y = -1/2x^2 có chiều rộng d=8m. Khi đó chiều cao h của cổng là? A. h = 8m B. h = 10m C. h = 7m D. h = 9m + Cho hàm số y = x^2 – 2x + 3. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hàm số đồng biến trên khoảng (2; +∞) B. Hàm số nghịch biến trên khoảng(-∞; 2) C. Đồ thị của hàm số có đỉnh I(1; 0) D. Hàm số đồng biến trên khoảng (0; +∞) [ads] + Trong một khoảng thời gian nhất định, tại một địa phương đài khí tượng thủy văn đã thống kê được: + Số ngày mưa: 10 ngày + Số ngày có gió: 8 ngày + Số ngày lạnh: 6 ngày + Số ngày mưa và gió: 5 ngày + Số ngày mưa và lạnh: 4 ngày + Số ngày lạnh và có gió: 3 ngày + Số ngày mưa lạnh và có gió: 1 ngày Vậy có bao nhiêu ngày có thời tiết xấu (có gió, mưa hoặc lạnh)?
Đề khảo sát chất lượng lớp 10 môn Toán năm học 2017 2018 trường THPT Hậu Lộc 4 Thanh Hóa lần 1
Nội dung Đề khảo sát chất lượng lớp 10 môn Toán năm học 2017 2018 trường THPT Hậu Lộc 4 Thanh Hóa lần 1 Bản PDF Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán khối 10 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa gồm 4 câu hỏi tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho hình vuông ABCD trên cạnh BC lấy điểm E. Dựng tia Ax vuông góc với AE, Ax cắt cạnh CD kéo dài tại F, kẻ trung tuyến AI của AEF, AI kéo dài cắt CD tại K. Qua E vẽ đường thẳng song song với AB cắt AI tại G. a. Chứng minh rằng tứ giác AECF nội tiếp b. Chứng minh rằng vtAB + vtEK + vtFA = vtEB + vtFK [ads] c. Chứng minh rằng vtFG = vtKE + Chứng minh rằng với mọi số thực dương a, b, c thì trong ba phương trình sau, ít nhất một phương trình có nghiệm: x^2 – 2√a.x + √bc = 0 x^2 – 2√b.x + √ac = 0 x^2 – 2√c.x + √ab = 0