Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 12 năm 2019 - 2020 cụm các trường THPT tỉnh Bắc Ninh

Nằm trong kế hoạch ôn tập, bồi dưỡng đội tuyển học sinh giỏi môn Toán 12 để chuẩn bị cho kỳ thi HSG Toán 12 năm học 2019 – 2020, vừa qua, một số trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề giao lưu HSG Toán 12 năm học 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh mã đề 132, đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài 90 phút; đề thi này cũng rất hữu ích dành các em học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn đề giao lưu HSG Toán 12 năm 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh : + Một đội xây dựng cần hoàn thiện một hệ thống cột trụ tròn của một cửa hàng kinh doanh gồm 10 chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 20 cm, sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng 42 cm. Chiều cao của mỗi cột trước và sau khi hoàn thiện là 4 m. Biết lượng xi măng cần dùng chiếm 80% lượng vữa và cứ một bao xi măng 50 kg thì tương đương với 3 64000cm xi măng. Hỏi cần ít nhất bao nhiêu bao xi măng loại 50 kg để hoàn thiện toàn bộ hệ thống cột đã cho? [ads] + Bạn An có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa, ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q, trong đó p và q là các số nguyên dương nguyên tố cùng nhau. Tìm q − 2p. + Cho hàm số y = x^4 – 2020x^2 – m^2 – 1 với m là tham số thực. Kết luận nào sau đây là sai? A. Đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt. B. Hàm số có 3 cực trị. C. Đồ thị hàm số nhận trục tung làm trục đối xứng. D. Đồ thị hàm số không có tiệm cận.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán cấp THPT năm 2022 - 2023 sở GDĐT An Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2023. Trích dẫn Đề học sinh giỏi Toán cấp THPT năm 2022 – 2023 sở GD&ĐT An Giang : + Cho hình thang ABCD vuông tại A và B cho AD = 2a; AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S bất kỳ. Gọi C’; D’ lần lượt là hình chiếu vuông góc của A trên SC; SD. a) Chứng minh rằng A; B; C’; D’ cùng thuộc một mặt phẳng. b) Chứng minh rằng C’D’ luôn đi qua một điểm cố định khi S thay đổi trên Ax. + Cho tập hợp các số có ba chữ số và tính chất sau: (1) Không có số nào chứa chữ số 0. (2) Tổng các chữ số của mỗi số là 9. (3) Hai số bất kỳ có chữ số hàng đơn vị khác nhau. (4) Chữ số hàng chục của hai số bất kỳ khác nhau. (5) Chữ số hàng trăm của hai số bất kỳ khác nhau. a) Tìm số phần tử của S là tập hợp các số có ba chữ số thỏa mãn (1) và (2). b) Tìm giá trị lớn nhất số phần tử của T các số có ba chữ số thỏa mãn (1) đến (5). + Cho tam giác đều ABC cạnh bằng a. Dựng tam giác A1B1C1 có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A2B2C2 có các đỉnh là trung điểm của các cạnh của tam giác A1B1C1 … tam giác An+1Bn+1Cn+1 là trung điểm các cạnh của tam giác AnBnCn … Đặt p1; p2 … pn … và S1; S2 … Sn … lần lượt là chu vi và diện tích tam giác A1B1C1; A2B2C2 … AnBnCn … a) Tính (pn) và (Sn) theo a, n. b) Ký hiệu Pn = p1 + p2 + … + pn và Qn = S1 + S2 + … + Sn. Tính lim Pn và lim Qn.
Đề học sinh giỏi MTCT Toán THPT năm 2022 - 2023 sở GDĐT Vĩnh Long
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp tỉnh giải toán bằng máy tính cầm tay môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi MTCT Toán THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một người gửi triệu đồng vào ngân hàng với kì hạn tháng (quý), lãi suất một quý theo hình thức lãi kép. Sau đúng tháng, người đó lại gửi thêm triệu đồng với hình thức và lãi suất như trên. Hỏi sau năm tính từ lần gửi đầu tiên người đó nhận được số tiền gần với kết quả nào nhất? (làm tròn đến 1 chữ số thâp phân). + Cho tam giác ABC có AB 3 5 BC 5 3 CA 48. Gọi M là trung điểm của AC; N là điểm trên cạnh BC sao cho BC BN 3 và BM cắt AN tại I. Trên đường thẳng vuông góc với mặt phẳng ABC tại I, lấy điểm S sao cho SI 7. Tính gần đúng a) Độ dài các cạnh SA SB SC của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). b) Chiều cao BK của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). c) Bán kính R của mặt cầu ngoại tiếp tứ diện SABC (làm tròn đến 9 chữ số thâp phân). + Cho 2023 đường tròn đồng tâm nội tiếp trong 2023 hình vuông (dạng như hình vẽ). Tính gần đúng diện tích phần tô đậm, biết hình vuông lớn nhất có cạnh bằng 1 cm (làm tròn đến 5 chữ số thâp phân).
Đề HSG Toán 12 năm 2022 - 2023 trường THCS THPT Thống Nhất - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng và chọn đội tuyển học sinh giỏi môn Toán 12 năm học 2022 – 2023 trường THCS & THPT Thống Nhất, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết mã đề 235. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 trường THCS & THPT Thống Nhất – Thanh Hóa : + Một người nhận hợp đồng dài hạn làm việc cho một công ty với mức lương khởi điểm của mỗi tháng trong 3 năm đầu tiên là 6 triệu đồng /tháng. Tính từ ngày đầu tiên làm việc, cứ sau đúng 3 năm liên tiếp thì tăng lương 10% so với mức lương một tháng người đó đang hưởng. Nếu tính theo hợp đồng thì tháng đầu tiên của năm thứ 16 người đó nhận được mức lương là bao nhiêu? + Xét các số nguyên dương a b sao cho phương trình 2 a xb x ln ln 5 0 có hai nghiệm phân biệt 1 2 x x và phương trình 2 5log log 0 xb xa có hai nghiệm phân biệt 3 4 x x thỏa mãn 12 34 xx. Tìm giá trị nhỏ nhất min S của S ab. + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a SA SB a SC SD a 3. Gọi E F lần lượt là trung điểm các cạnh SA SB. Trên cạnh BC lấy M sao cho BM x. Tính diện tích thiết diện của hình chóp với mặt phẳng (MEF) theo x và a?
Đề học sinh giỏi Toán 12 năm 2022 - 2023 trường THPT Yên Định 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giao lưu học sinh giỏi môn Toán 12 THPT năm học 2022 – 2023 trường THPT Yên Định 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 12 năm 2022 – 2023 trường THPT Yên Định 1 – Thanh Hóa : + Cho đa giác lồi n cạnh n n 6 nội tiếp đường tròn (O) sao cho không có ba đường chéo nào đồng quy. Các cạnh và các đường chéo của đa giác giao nhau tạo thành các tam giác. Gọi X là tập hợp các tam giác như thế. Lấy ngẫu nhiên một tam giác trong tập X. Tìm n để xác suất lấy được tam giác không có đỉnh nào là đỉnh của đa giác bằng 4 15. + Cho hàm số 3 22 3 y x mx m x m 3 3 với m là tham số, gọi (C) là đồ thị của hàm số đã cho. Biết rằng, khi m thay đổi, điểm cực đại của đồ thị (C) luôn nằm trên một đường thẳng d cố định. Xác định hệ số góc k của đường thẳng d. + Một chiếc ly dạng hình nón (như hình vẽ với chiều cao ly là h). Người ta đổ một lượng nước vào ly sao cho chiều cao của lượng nước trong ly bằng 1 4 chiều cao của ly. Hỏi nếu bịt kín miệng ly rồi úp ngược ly lại thì tỷ lệ chiều cao của mực nước và chiều cao của ly nước bây giờ bằng bao nhiêu?