Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa

Nội dung Đề HSG lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Đề Thi Học Sinh Giỏi Toán Lớp 9 Trường THPT Chuyên Lam Sơn Thanh Hóa Xin chào quý thầy, cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 27 tháng 11 năm 2022. Trích dẫn một số câu hỏi trong đề: 1. Hai số nguyên dương a, b được gọi là "cân bằng" nếu hai số này có cùng tập ước nguyên tố. Tìm tất cả các số nguyên dương n sao cho n và n + 6 là hai số "cân bằng" và n chia hết cho 4. 2. Cho đường tròn (O;R), đường kính AB cố định. Một điểm C di chuyển trên (O) (C khác A, B). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Vẽ CH vuông góc với AB tại H. Hãy chứng minh một số tính chất của tam giác và đường tròn trong trường hợp này. 3. Một số câu hỏi khác liên quan đến vị trí của điểm C trên đường tròn, tìm điểm E trên AB để diện tích tam giác CEF lớn nhất, và chứng minh các mối quan hệ giữa các điểm và đường thẳng trong tam giác AHC. Hy vọng bài viết trên sẽ giúp các bạn ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Nghi Thủy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Nghi Thủy, huyện Cửa Lò, tỉnh Nghệ An.
Đề chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 12 tháng 10 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Tìm số tự nhiên n sao cho n2 + 2022 là số chính phương. + Cho a, b, c là các số nguyên khác 0 thỏa mãn điều kiện: (1/a + 1/b + 1/c)2 = 1/a2 + 1/b2 + 1/c2. Chứng minh rằng: a3 + b3 + c3 chia hết cho 3. + Cho tam giác ABC nhọn và điểm P nằm trong tam giác đó. Chứng minh khoảng cách lớn nhất trong các khoảng cách từ P tới ba đỉnh của tam giác không nhỏ hơn hai lần khoảng cách bé nhất trong các khoảng cách từ điểm P đến các cạnh của tam giác đó.
Đề HSG Toán 9 vòng 1 năm 2022 - 2023 liên trường THCS huyện Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An : + Đa thức f(x) khi chia cho x – 5 được số dư là 14 và khi chia cho x + 1 được số dư là 2. Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức x2 – 4x – 5. + Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh rằng: EF BC A cos b) Gọi I là trung điểm cua AH, M là trung điểm của BC, K là giao điểm của EF và IM. Chứng minh rằng: 2 AH 4 IK IM. + Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Chứng minh rằng, khi đường thẳng d thay đổi (cắt các cạnh AB, AC) thì tổng AB AC AD AE có giá trị không đổi.
Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 tháng 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GD&ĐT Chí Linh – Hải Dương : + Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). + Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. + Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. a) Tính DE3/BD.CE theo R. b) Tính: AI/HB + AI/HC. c) Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất.