Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Yên Định Thanh Hóa

Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Yên Định Thanh Hóa Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Toán Lớp 7 Năm 2020-2021 Phòng GD&ĐT Yên Định Thanh Hóa Đề Học Sinh Giỏi Toán Lớp 7 Năm 2020-2021 Phòng GD&ĐT Yên Định Thanh Hóa Đề học sinh giỏi Toán lớp 7 năm 2020-2021 do Phòng Giáo dục và Đào tạo Yên Định tổ chức bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi diễn ra vào ngày 02 tháng 02 năm 2021. Đề thi cung cấp lời giải chi tiết và hướng dẫn chấm điểm. Trích từ đề học sinh giỏi Toán lớp 7 năm 2020-2021 Phòng GD&ĐT Yên Định-Thanh Hóa: 1. Tìm một số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau. 2. Tìm các số nguyên dương n và các số nguyên tố p sao cho n n = p. 3. Cho ABC có góc A nhỏ hơn 90 độ. Trên nửa mặt phẳng bờ AB không chứa điểm C, vẽ đoạn thẳng AM sao cho AM vuông góc với AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ đoạn thẳng AN sao cho AN vuông góc với AC và AN = AC. a) Chứng minh rằng: ∠AMC = ∠ABN. b) Chứng minh: BN || CM. c) Kẻ AH || BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. Đề thi được thiết kế để thử thách học sinh lớp 7 với các bài toán đa dạng và logic. Thách thức không chỉ đến từ việc tìm ra đáp án đúng mà còn từ việc phải chứng minh các bước giải thật chặt chẽ. Đây là cơ hội để các em thể hiện kiến thức và khả năng tư duy logic của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho một dãy số gồm tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 30 là: -29, -28, -27, …, -1, 0, 1, …,27, 28, 29. Các số nguyên trên được đánh số thứ tự một cách tùy ý. Lấy mỗi số đó trừ đi số thứ tự của nó ta được một hiệu. Hãy tính tổng của tất cả các hiệu đó. + Cho tam giác ABC vuông tại A, đường cao AH (H BC). Về phía ngoài của tam giác ABC vẽ các tam giác ABE vuông cân tại B và tam giác ACF vuông cân tại C. Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh rằng: a) 0 BAH EBC 180 từ đó suy ra BAI EBC. b) BI = CE và ba điểm E, A, F thẳng hàng. c) Ba đường thẳng AH, CE, BF cắt nhau tại một điểm. + Cho a, b là các số hữu tỉ khác 0, thỏa mãn điều kiện: a ab a b b. Tính giá trị của biểu thức 2 2 Ta b.
Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Yên Lập - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh: a) K là trung điểm của AC. b) KMC là tam giác đều. c) Cho BK = 2cm. Tính các cạnh AKM. + Tìm nghiệm nguyên dương của phương trình x + y + z = xyz.
Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm các số a, b, c không âm thỏa mãn đồng thời ba điều kiện: a + 3c = 2014; a + 2b = 2015; tổng (a + b + c) đạt giá trị lớn nhất. + Trên bảng viết 99 số: 1, 2, 3, 4 … 99. Cứ mỗi lần người ta xóa đi hai số bất kì rồi lại viết giá trị của tổng hai số vừa xóa vào bảng. Cuối cùng trên bảng chỉ còn lại một số, giả sử đó là số k. Hãy tìm k và chứng tỏ k không phải là số chính phương. + Cho m, n, p là các số nguyên dương thỏa mãn: m2 = n2 + p2. Chứng minh rằng: tích m.n.p chia hết cho 15.
Đề học sinh giỏi huyện Toán 7 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n 4 và 2n đều là các số chính phương. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. 1) Chứng minh K là trung điểm của AC. 2) Chứng minh KMC là tam giác đều. 3) Cho BK = 2cm. Tính các cạnh của AKM. + Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên và a 0. Biết với mọi giá trị nguyên của x thì f(x) luôn chia hết cho 23. Chứng minh rằng các số a, b, c đều chia hết cho 23.